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Abstract. We introduce the concept of a trust network—a decentralized
payment infrastructure in which payments are routed as IOUs between
trusted entities. The trust network has directed links between pairs of
agents, with capacities that are related to the credit an agent is willing
to extend another; payments may be routed between any two agents
that are connected by a path in the network. The network structure
introduces group budget constraints on the payments from a subset of
agents to another on the trust network: this generalizes the notion of
individually budget constrained bidders.
We consider a multi-unit auction of identical items among bidders with
unit demand, when the auctioneer and bidders are all nodes on a trust
network. We define a generalized notion of social welfare for such budget-
constrained bidders, and show that the winner determination problem
under this notion of social welfare is NP-hard; however the flow structure
in a trust network can be exploited to approximate the solution with
a factor of 1 − 1/e. We then present a pricing scheme that leads to
an incentive compatible, individually rational mechanism with feasible
payments that respect the trust network’s payment constraints and that
maximizes the modified social welfare to within a factor 1 − 1/e.

1 Introduction

Consider an auction where payments take the form of IOUs. That is, the winning
buyer(s) do not immediately pay with dollars or other standardized currency,
but instead commit to compensate the seller appropriately at some later date.
In this setting, the seller must consider not only the magnitude of a buyer’s bid,
but also the risk of the buyers defaulting on their commitments. Naturally the
seller may not wish to accept a large IOU from an unknown or untrustworthy
bidder.

Now suppose the seller will not accept an IOU from buyer Alice. Alice might
still be able to compete in the auction if someone that the seller does trust, say
Bob, in turn trusts Alice. Then Alice can pass an IOU to Bob who can pass an
IOU to the seller. The seller is paid with a commitment from Bob, someone the
seller trusts, and Bob receives a commitment from Alice, someone he trusts.

In Section 3, we formalize this notion of a payment infrastructure based on
a trust network. The trust network induces pairwise (directed) limits on how
much compensation can flow from any one agent to another. In this way, trust



networks generalize the notion of budget constraints where, instead of a single
budget per agent denominated in a common currency, there may exist different
budgets for every subset of agents. Note that it is not enough to consider budget
limits on how much individual agents can pay the seller since there may be
multiple buyers whose payments Bob needs to vouch for. Thus, the amount that
a buyer can pay the seller depends on the degree to which other buyers have
exhausted the Bob link.

We examine the problem of mechanism design in trust networks, specifically,
a multi-item auction of identical items. The auctioneer is a node in the network,
and payments to the auctioneer are constrained by link capacities: The payments
from a subset of bidders cannot exceed the maximum flow from these nodes
to the auctioneer on the trust network. It is not possible to design incentive
compatible mechanisms to maximize social welfare in this setting so we define a
modified notion of social welfare based on budget-capped values. In Section 4, we
show that the winner determination problem—choosing the set of winners that
maximizes this modified notion of welfare—is NP-hard. We present an algorithm
for this problem in Section 4.2 that exploits the the flow structure in the trust
network to approximate the solution within a factor 1 − 1/e. Using this, in
Section 5, we present a pricing scheme that leads to an incentive compatible,
individually rational mechanism with feasible payments that respect the group
budgets and that approximately maximizes the modified social welfare to within
a factor 1− 1/e.

The next section compares trust networks with more traditional payment
infrastructures and describes the existing trust network implementations that
motivate our research.

2 Payment as a routing problem

Currencies can in fact operate as abstract IOUs, or obligations. Modern cur-
rencies are issued in the form of abstract obligations to provide value of some
form, be it banks’ obligations to redeem account balances for government notes,
governments’ obligations to redeem those notes as credit toward taxes due, or e-
gold’s obligations to store gold in trust for account holders. A decision to accept
a certain currency3 is a decision to trust the issuer to fulfill its obligations. From
this perspective, a loan repayment agreement is currency issued by the borrower
and accepted by the lender.

Payment is the transfer of obligations from one entity, the payer, to another,
the recipient, in a form the recipient will accept. In other words, to make pay-
ment, the payer must present obligations from a currency issuer that is trusted
by the recipient. The payer is faced with the problem of how to route the pay-
ment: how to convert obligations that it holds or can readily obtain (for example,
via a line of credit) into obligations from an issuer that the recipient considers
trustworthy. This routing takes place in a trust network. The most ubiquitous
3 Currency here is defined as obligations from a certain issuer, as considered separately

from the units of value in which those obligations are accounted.



routable financial trust network is the banking system. At the national level this
is essentially a tree, with the central bank at the root, regular banks as children
of the central bank, and bank customers as the leaves. This arrangement makes
it feasible to route payments manually, since there is only one path between any
two nodes in a tree.

Analogy to computer networks. Computer networks are built to route in-
formation from one computer to another. The evolution of computer networks
follows a similar course to that of currency networks. For a small network, com-
puters can be directly connected to each other as needed using wires. As the
number of computers grows, this soon becomes unwieldy, and it is easier to con-
nect all the computers to a special intermediary computer (a router), which re-
lays information between computers in the network. Routers accept and transmit
data like any other computer, but act as hubs for transferring messages between
computers because they are highly connected in the computer network, just as
banks act as hubs for transferring obligations between people because they are
highly connected in the financial trust network. Eventually, it is desirable to
send information between networks, and to accomplish this, several routers can
be connected to a super-router, and these in turn can be connected to an even
higher router, and so on in a hierarchical fashion as needed. Since there is only
a single route between any two points, routing messages in strictly hierarchical
networks is simple.

The designers of the Internet did not build it as a strict hierarchical network—
primarily because to withstand a nuclear attack, it could not have any single
points of failure. As a side effect, the Internet can operate as the most demo-
cratic forum for communication ever known, because it does not require, and
is in fact resistant to, control by special groups. A non-hierarchical financial
network can have similar advantages. Two systems recently implemented by
the authors—first Ripple [7] and then Yootles [12]—demonstrate this powerful
generalization of the usual financial trust tree. These systems route payments
through arbitrary financial trust networks much like the internet routes data
through arbitrary computer networks, demonstrating how advances in routing
enable the formation of decentralized routable payments. The Yootles system
allows its users to conduct auctions of a variety of types [12]. This paper for-
mally defines the concept of a trust network, and describes how auction design
is impacted by the payment constraints implied by the network.

3 The model

We first define our proposed decentralized payment infrastructure. We denom-
inate the hypothetical currency in utils, representing an abstract measure of
utility [12], but this choice is orthogonal to our results.

Trust networks. A trust network, or decentralized ledger, consists of two
directed graphs defined on a set of vertices V = {0, . . . , m} representing entities,



or agents. (Vertex 0 will be treated specially in the next section.) A set of edges
EO gives the pairwise account balances between nodes. The weight oij on an
edge (i, j) ∈ EO quantifies the obligations that i has to j, that is, i is committed
to increasing j’s utility by oij utils or, if oij < 0 then j owes −oij utils to i. By
definition, oij = −oji for all i, j and oii ≡ 0.

A set of edges ET gives pairwise credit limits between agents. The weights
on these edges quantify the trust in the trust network. An edge (i, j) ∈ ET with
weight tij specifies that i has extended j a credit line of tij utils. In practice these
edges may have concomitant interest rates and there may be multiple lines of
credit issued between agents at different interest rates. In this paper we ignore
interest and assume that every directed pair of agents has exactly one credit
limit, possibly zero.

21 3
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t32

o12 o23

Fig. 1. A trust network with three agents. Credit extended from 1 to 2 and from 2 to
3 are not shown.

The power of a trust network defined above is that arbitrary payments can
be made by passing obligations between agents that explicitly trust each other
if the network is sufficiently well-connected. For example, in Figure 1 agent 1
can make a payment of x utils to agent 3 by issuing an obligation of x utils
to agent 2 and agent 2 issuing an obligation for the same amount to agent 3,
increasing both o12 and o23 by x utils. (Note that agent 2’s net balance remains
unchanged.) The payment is feasible as long as both 1’s remaining credit with
2 (i.e., t21 − o12) and 2’s remaining credit with 3 (i.e., t32 − o23) are greater
than or equal to the payment amount of x utils. This generalizes to arbitrarily
long payment chains in the obvious way. The maximum x satisfying the credit
constraints along a path from i to j is the payment capacity of that path. The
overall payment capacity for (i, j) is the amount that could be paid from i to
j if each path from i to j was maxed out in sequence—that is, the maximum
flow [1] from i to j.4

Auctions on trust networks. We consider multi-unit auctions of k identical
items among n bidders on the trust network. We label the nodes V = {0, . . . , m}
so that auctioneer is node 0, and the bidders are A = {1, . . . , n}. (The remaining
nodes {n + 1, . . . , m} may be used for routing payments, but do not participate
in the auction.) Every bidder i has a private value vi for the item. Bidders have
unit demand—that is, they want no more than one unit of the item.

4 In practice, the system may limit routing, for example by only considering paths up
to a certain length or only considering a subset of all paths. If so, the system will be
computing lower bounds on the true payment capacities. Payment feasibility thus
degrades gracefully with computational restrictions on payment routing.



To study this problem, we do not need to consider the account balances
and credit limits on the edges of the trust network separately—all that matters
is the remaining credit on a link. The trust network can therefore be defined
by a single graph G comprising the same set of vertices V and a set of edges
E representing the payment capacities of edges, where an edge (i, j) ∈ E has
capacity cij = tji−oij . We assume that the network structure and link capacities
cij are publicly known: bidders cannot strategically report link capacities to the
auctioneer.

The link capacities limit the maximum payment that can be made by any
subset of bidders S ⊆ A to the auctioneer. We denote by c(S) the maximum flow
that can be routed from S to 0 on the graph with link capacities cij ; c(S) is a
group budget, or combined budget, for the nodes in S. This generalizes the notion
of individually budget-constrained bidders [3]. (However, note that our setting
is a special case of combined budgets: not all values for combined budgets can
be derived from maximum flow constraints on a network with link capacities.)
We will refer to payments that can be routed along the trust network without
violating any link capacity constraints as feasible payments. Feasible payments
correspond exactly to those where the total payment from every subset of nodes
is less than or equal to the budget constraint for that subset.

Due to the budget constraints, it is not possible to design an incentive com-
patible mechanism to maximize social welfare, or the sum of private values of
winning bidders.5 Instead we define a modified notion of welfare. For any subset
of bidders S ⊆ A, let v(S) denote the budget-capped value of this set, defined
as the optimal value of the linear program with variables xi:

maximize
∑

i∈S

xi

s.t.
∑

i∈T

xi ≤ c(T ) ∀ T ⊆ S

0 ≤ xi ≤ vi.

(1)

In a regular auction, a bidder’s private value can be thought of as the maximum
individually rational payment the bidder is willing to make to the auctioneer;
here the budget-capped value of a set of bidders is the maximum individually
rational payment from this set of bidders that are feasible on the trust network.
When the group budgets, c(T ), are sufficiently large, that is, c(T ) ≥ ∑

i∈T vi

for all T , then the modified welfare is exactly the sum of the valuations of the
bidders: v(S) =

∑
i∈S vi. We define v(S, b) as the value of (1) with vi replaced

by bi (i.e., with the constraint 0 ≤ xi ≤ bi). As usual, we will use b−i to denote
the vector b with the ith component removed.

5 To see why, consider a mechanism that tries to maximize welfare in the face of
budget-constrained bidders. The mechanism would have to base allocation decisions
on agents’ reported values—values that can be greater than what the agents could
pay. But then low valuation agents with the same ability to pay would report valu-
ations that made them appear identical to the high-valuation agents.



4 Complexity of winner determination

In this section we study the winner determination problem in a k-unit auction
on a trust network, i.e., to select a set of at most k bidders on a trust network
to maximize the budget-capped social welfare defined in §3. This is essentially
equivalent to the problem of selecting k sources in a graph that can send the
maximum amount of flow to a given destination (the auctioneer). The problem
can be studied in two models: one where ex-post individual rationality is re-
quired (the ex-post IR model), and another where it is enough to satisfy ex-ante
individual rationality (the ex-ante IR model).

Problem Formulation. We start by formulating the problem in the ex-post
IR model as the mathematical program (2) below. The binary variable yi in the
program indicates whether the bidder i is selected as a winner. The variable xi is
the amount of “value” extracted from bidder i. The constraints (2c)–(2e) guar-
antee that these amounts are routable through the trust network. The variable
zu,w in these constraints corresponds to the amount of flow routed through the
directed edge (u, w) in the graph.

The ex-ante IR problem can be formulated similarly, except the constraint
(2g) is relaxed to 0 ≤ yi ≤ 1. The value of yi means that the bidder i receives a
unit of the good with probability yi. Note that the ex-ante IR property allows
us to charge a bidder, who (due to the outcome of the coin flip) does not receive
any item, as long as the expected value the bidder receives is not more than the
expected amount she pays. The winner determination problem in the ex-ante
IR case can thus be solved exactly by solving a linear program. For the rest of
this section, we will focus on the winner determination problem in the ex-post
IR model, and show tight hardness and approximability results.

maximize
∑

i∈A
xi (2a)

s.t. ∀i ∈ A : xi ≤ viyi (2b)

∀u ∈ {n + 1, . . . , m} :
∑

(u,w)∈E

zu,w =
∑

(w,u)∈E

zw,u (2c)

∀u ∈ A :
∑

(u,w)∈E

zu,w −
∑

(w,u)∈E

zw,u ≥ xi (2d)

∀(u,w) ∈ E : 0 ≤ zu,w ≤ cu,w (2e)
∑

i∈A
yi ≤ k (2f)

∀i ∈ A : yi ∈ {0, 1} (2g)

4.1 Hardness of the ex-post problem

The following theorem shows that the winner determination problem is hard to
approximate within any factor better than 1− 1/e, even if all edges of the trust
network have capacity 1.



Theorem 1. If the winner determination problem for ex-post IR multi-unit auc-
tions on trust networks can be approximated within a factor of 1 − 1/e + ε for
any ε > 0, then NP ⊆ TIME(nO(log log n)).

Proof. We reduce the problem of maximum k-coverage to this problem. An in-
stance of the max k-coverage problem consists of a number k and a collection
of subsets S1, S2, . . . , Sp of a universe U . The goal is to find a subcollection
Si1 , . . . , Sik

of size k whose union has the maximum size. Given such an instance,
we construct an instance of the winner determination problem as follows: the
parameter k corresponds to the number of items available for sale, each set Si

corresponds to a bidder i, and each element of U corresponds to a non-bidder
node in the trust network. The only other node in the trust network corresponds
to the auctioneer, which is denoted by 0. For every element j ∈ U , there is an
edge from j to 0, and for every i ∈ {1, . . . , p} and j ∈ Si, there is an edge from
the vertex i to the vertex j. The capacity of all edges are 1. The value of each
bidder i ∈ {1, . . . , p} is |Si|. It is easy to see that the budget-capped value of a
collection of bidders is equal to the size of the union of the corresponding sets.
Therefore the solution of the winner determination problem is precisely equal to
the solution of the max k-coverage problem. The hardness result follows from a
theorem of [6], who show that the max k-coverage problem is hard to approxi-
mate within any factor better than 1− 1/e, unless NP ⊆ TIME(nO(log log n)).

4.2 Approximation algorithm

The above theorem shows that the ex-post IR winner determination problem
is at least as hard as the max k-coverage problem. For the max k-coverage
problem, there is a well-known greedy algorithm that achieves an approximation
factor of 1− 1/e. Using this algorithm, and a lemma proved in [4] for a different
problem, we can show that the ex-post IR winner determination problem can be
approximated within a factor of 1− 1/e.

The algorithm, which is a natural generalization of the greedy algorithm for
max k-coverage, is as follows. Start with S = ∅. In every iteration, select a bidder
that maximizes the marginal value v(S ∪ {i})− v(S), and add this bidder to S.
Continue this for k iterations, until |S| = k. To prove the approximation factor of
this algorithm, we need the following lemma, which is an adaptation of Lemma
3 in [4].

Lemma 1. Let G be a directed graph with capacities on the edges, and S1 and
S2 be two subsets of vertices of G. Consider a maximum flow f from the vertices
in S1 to a special vertex 0 6∈ S1 ∪ S2, and let fi denote the amount of flow
originating from the vertex i ∈ S1 in this solution. Then there is a solution to
the maximum flow problem from vertices in S1 ∪S2 to the vertex 0, in which the
amount of flow originating from every vertex i ∈ S1 is precisely fi.

Proof (sketch). We use the Ford-Fulkerson [1] algorithm for solving the max-
imum flow problem from S1 ∪ S2 to 0. In each iteration of the algorithm, an
augmenting path is found, with respect to the current feasible flow, to increase



the total flow sent from S1 ∪ S2 to 0: the Ford-Fulkerson theorem guarantees
that such an augmenting path can be found in any non-optimal flow. To prove
the lemma, we apply this algorithm starting from the flow f . If in each iteration
we find the shortest augmenting path from S1∪S2 to 0, the path cannot contain
any vertex of S1∪S2 as an interior vertex, and therefore it will never change the
amount of flow originating from a vertex in S1. Hence, in the final maximum flow
computed by this algorithm, the amount of flow originating from every i ∈ S1

is fi.

Theorem 2. The greedy algorithm achieves an approximation ratio of 1 − 1/e
for the winner determination problem in ex-post IR multi-unit auctions on trust
networks.

Proof. Consider an instance of the problem, and let OPT denote the value of
the optimal solution on this instance, and S∗ denote the set of winners in this
solution. Let Ti denote the value of the solution found at the end of the i’th
iteration of the greedy algorithm, and set T0 = 0. The main ingredient of the
proof is the following inequality, which bounds the amount of marginal value in
iteration r:

Tr − Tr−1 ≥ OPT− Tr−1

k
(3)

To prove this, we construct the graph G′ from the trust network by adding a
shadow vertex i′ for every bidder i, and connecting i′ to i with an edge of capac-
ity vi. Clearly, the budget-capped value of any set S of bidders is equal to the
maximum amount of flow that can be sent from the set of shadow vertices of bid-
ders in S to the vertex 0. Let S1 denote the set of shadow vertices corresponding
to the bidders selected in the first i− 1 iterations of the greedy algorithm, and
S2 denote the shadow vertices for bidders in S∗. Consider a solution to the max-
imum flow problem from the vertices in S1 to 0, and denote by fi the amount of
flow originating from i ∈ S1 in this solution. By Lemma 1, there is a maximum
flow f̃ from the vertices of S1 ∪ S2 to 0 in which the flow originating from any
vertex i ∈ S1 is precisely f1. On the other hand, since the amount of flow that
can be sent from S2 to 0 is OPT, the value of the flow f̃ is also at least OPT.
Therefore in f̃ , vertices in S2 \S1 send at least OPT−∑

i∈S1
fi = OPT− Tr−1.

Since there are at most k vertices in S2 \S1, there must be a vertex i′ in this set
(corresponding to the bidder i), which sends at least (OPT − Tr−1)/k units of
flow to 0. This implies that the marginal value resulting from adding the vertex
i in the r’th iteration of the algorithm is at least (OPT− Tr−1)/k. Since the al-
gorithm always adds a vertex with the highest marginal value, the inequality (3)
follows. Inequality (3) can be re-arranged as follows:

(
1− 1

k

)−r

Tr ≥ OPT
k

(
1− 1

k

)−r

+
(

1− 1
k

)−(r−1)

Tr−1.

By adding these inequalities for r = 1, . . . , k and simplifying, we obtain

Tk ≥ OPT

(
1−

(
1− 1

k

)k
)
≥

(
1− 1

e

)
OPT.



This completes the proof of the theorem, as Tk is the value of the greedy solution.

The above proof heavily uses the combinatorial structure of the budgets
imposed by the trust network, and therefore does not generalize to the more
abstract model of collective budgets. In fact, the winner determination problem
in the abstract model cannot be approximated to within any factor better than
n1−ε even if all subsets that have a budget are of size two, as shown by the
following reduction from the maximum independent set problem. Each node of
the given graph G corresponds to a bidder of value 1, and the collective budget
of any pair of bidders connected by an edge in G is 1. No other subset of bidders
has a collective budget. It is clear that the solution of the winner determination
problem in this instance corresponds to a maximum independent set in G. By the
hardness of the maximum independent set problem [8], the winner determination
problem in this case is hard to approximate.

4.3 Algorithms for special cases

Despite the hardness result in Theorem 1, the winner determination problem
can be solved exactly in some special cases, most notably in the case that the
trust network is hierarchical, as for a national banking system.

Theorem 3. If the underlying undirected graph of the trust network G is a tree,
the winner determination problem for ex-post IR multi-unit auctions on G can
be solved in polynomial time.

Proof (sketch). First, we show that without changing the value of the solution,
we may transform the trust network into an (incomplete) binary tree T with
bidders as leaf nodes. Also, for every bidder i, add a shadow node i′, and add a
link from i′ to i with capacity vi. Let U denote the set of shadow nodes. Define
V [v, l] as the maximum flow that can be routed to an internal node v from at
most l nodes in U that are in the subtree rooted at v. Then

V [v, l] = max
l1+l2=l

(min(V [v1, l1], cv1,v) + min(V [v2, l2], cv2,v)),

where v1 and v2 are the children of v. It is not hard to see that values of V [v, l] can
be computed efficiently using dynamic programming given the above recursive
formula. The solution to the winner determination problem is V [0, k].

5 Mechanism design

In this section, we discuss the question of designing an incentive compatible
mechanism that maximizes the modified welfare. The solution to the winner
determination problem specifies the allocation of items amongst bidders that
maximizes, or approximately maximizes, modified welfare; the pricing scheme
must be chosen to ensure incentive compatibility, as well as feasible payments.

We show that mechanisms M and M′, stated below, are incentive compati-
ble, individually rational mechanisms with feasible payments, that respectively



maximize and approximately maximize modified welfare: M assumes that the
winner determination problem can be solved exactly, and allocates items accord-
ing to this solution, while M′ allocates items according to the greedy algorithm
in the previous section. (Although the mechanisms look very similar, the proofs
for feasibility of payments are different, so we present them separately.)

Mechanism M: Every bidder submits a bid bi to the auctioneer.

– Allocation: The winning set is the lexicographically first subset S∗ of bidders
that maximizes v(S, b) over all subsets with |S| ≤ k. Assign the k items to
bidders in the winning set S∗.

– Pricing: Charge bidder i ∈ S the smallest value pi ≤ bi such that i would
still belong to the winning set with bids (b−i, pi).6

Note that the winning set need not be S∗ with input bj for j 6= i and pi—we
only require that the winning set contains i.

Theorem 4. The mechanism M is incentive compatible, ex-post individually
rational, maximizes modified social welfare, and leads to payments that are fea-
sible on the trust network.

Proof. Incentive compability follows from the results in [2]; a direct proof can
also be found in the full version of this paper. The main component of the
proof is showing that these payments are feasible, i.e., they can be routed to the
auctioneer along the network. For this, we need to show that the payments pi

satisfy the first set of constraints in (1).
Let w∗ = v(S∗) denote the value of the winning set, when bj = vj for all

bidders j. Abusing notation slightly, let v(S, bi) denote the value of set S when
bidder i bids bi and all other bidders continue to bid vj . For i ∈ S∗, let v′i be
the smallest value such that v(S∗, v′i) is still w∗. In fact, v′i = x∗i , where x∗i is
the smallest value of xi amongst all optimal solution vectors x for the linear
program (1) (with the true values vi as input).

With bi = v′i, S∗ is still the winning set: v(S) is unchanged for sets not
containing i, and v(S, v′i) ≤ v(S, vi) for sets containing i, since v′i ≤ vi (the
feasible set in (1) with bi = v′i is a subset of the feasible set with bi = vi, so
the optimal value cannot increase). Since S∗ was the lexicographically first set
with bi = vi, and the value of no set increases when bi decreases to v′i, S∗ is
still the lexicographically first set with the highest value when bi = v′i. Thus the
bid at which i still belongs to the winning set is at least as small as v′i, i.e.,
pi ≤ v′i = x∗i . Since x (the optimal solution to 1 with entry x∗i for bidder i) is
feasible, we have

x∗i +
∑

j 6=i,j∈T

xj ≤ c(T ) ∀ T,

6 Note that this price pi need not be the same as the smallest report p′i at which i still
belongs to some set with the highest value (i.e., not necessarily the lexicographically
first set): clearly pi ≥ p′i; pi can in fact can be strictly larger.



Using identical arguments for all other winners j, pj ≤ x∗j ≤ xj , and substituting
above, we get ∑

i∈T

pi ≤
∑

i∈T

x∗i ≤ c(T ) ∀ T,

i.e., the payments are feasible. Individual rationality follows from the fact that
pi ≤ v′i ≤ vi if the bidder wins an item, and is 0 otherwise.

The greedy algorithm in Section 4.2 can be used to design a mechanism M′

that approximates modified social welfare to a factor 1− 1/e, when the winner
determination problem cannot be solved exactly:

– Allocation in M′: Choose the set of winning bidders according to the greedy
algorithm in Theorem 2, breaking all ties in favor of the bidder with the
lower index.

– Pricing in M′ : Charge bidder i ∈ S the smallest value pi ≤ bi, such that i
would still be chosen by the greedy algorithm when all bidders j 6= i report
bj , and bidder i reports pi.

Theorem 5. The mechanism M′ approximates modified social welfare by a fac-
tor 1− 1/e, is incentive compatible, ex-post individually rational, and results in
feasible payments.

The proof of feasibility of payments relies on Lemma 1, and can be found in
the full version of this paper.

6 Discussion

There are myriad additional mechanism design problems that can be studied
in the context of trust networks. For instance, we might have multiple sellers,
heterogeneous goods, the auctioneer may prefer to maximize revenue instead
of welfare and so on [5]. However, the impossibility result in [3] shows that in
many of these cases achieving incentive compatibility in dominant strategies is
impossible. A natural extension to consider, particularly for the case of repeated
auctions, is interest rates on the credit links Interest causes positive balances
to become more positive over time and negative balances to become more nega-
tive. Not only does this complicate the payment routing problem (unless a single
universal interest rate is used) but it means link capacities decrease over time,
impacting the mechanism design problem. Other mechanisms besides auctions
are also affected by the constraints inherent in a trust network. For example,
betting games like poker become complicated when not every bet is honored by
every player and if the degree to which a bet is honored depends on how other
players—intermediate nodes in the trust network—fare in the game. Other mech-
anisms of interest to study in this setting include decision auctions, prediction
markets [13] (with and without automated market makers [9–11]), and various
incentive schemes for participation in the trust network itself.



The continued growth and development of online services and protocols for
building decentralized financial trust networks will also pose questions and chal-
lenges in areas such as routing, distributed transactions, online identity verifi-
cation, reputation systems, and spam prevention. Both in terms of design and
analysis of trust networks and in terms of mechanism design problems on trust
networks, we hope that this paper opens a number of interesting research av-
enues.
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