
Online story scheduling in web advertising

Anirban Dasgupta ∗ Arpita Ghosh ∗ Hamid Nazerzadeh †‡

Prabhakar Raghavan ∗

Abstract

We study an online job scheduling problem motivated by storyboarding in web advertising,
where an advertiser derives value from having uninterrupted sequential access to a user surfing
the web. The user ceases to browse with probability 1− β at each step, independently. Stories
(jobs) arrive online; job s has a length `s and a per-unit value vs. We get a value vs for every
unit of the job that we schedule consecutively without interruption, discounted for the time at
which it is scheduled. Jobs can be preempted, with no further value derived from the residual
unscheduled units of the job. We seek an online algorithm whose total reward is competitive
against that of the offline scheduler that knows all jobs in advance.

We consider two models based on the maximum delay that can be allowed between the
arrival and scheduling of a job. In the first, a job can be scheduled anytime after its arrival;
in the second a job is lost unless scheduled immediately upon arrival, pre-empting a currently
running job if needed. The two settings correspond to two natural models of how long an
advertiser retains interest in a relevant user. We show that there is, in fact, a sharp separation
between what an online scheduler can achieve in these two settings. In the first setting with no
deadlines, we give a natural deterministic algorithm with a constant competitive ratio against
the offline scheduler. In contrast, we show that in the sharp deadline setting, no (deterministic
or randomized) online algorithm can achieve better than a polylogarithmic ratio.

∗Yahoo! Research, Santa Clara, CA, email: {anirban, arpita, pragh}@yahoo-inc.com
†Stanford University, Stanford, CA, email: hamidnz@stanford.edu
‡Work performed in part at Yahoo! Research.

1

1 Introduction

Online advertising is a major source of revenue for Internet companies, with display advertising
contributing a significant (21% [10]) and growing fraction. In display advertising, the content of a
webpage – and increasingly, the browsing history of a user – is used for targeting ads.

One paradigm for targeting display ads, based on this ability to track a user across the web, is
storyboarding, also referred to as sequence advertising or surround sessions [11, 8]1. Here, a single
advertiser gets exclusive access to a user for a sequence of consecutive pages viewed by the user,
with no interruptions from other advertisers. This sequence of slots can be used by the advertiser
either to show a set of unrelated ads for reinforcement of his message, or to creatively use a story
line across several pages.

Consider a setting where multiple advertisers each vie for access to a sequence of contiguous
steps during a user’s browsing session. Each advertiser appears at some step in the session, when the
user visits a webpage with content relevant to her ad. The number of slots sought by the advertiser,
as well as his value from having his request granted, varies by the combination of advertiser and
user. As advertiser requests arrive online (each triggered by the current state of the user’s browsing
history), an ad server must decide which requests to grant, since at any time only a single advertiser
can have access to the user. The objective of the ad server is to maximize total value on a user. For
our purposes, it suffices to consider the decisions made by the ad server for a single user, since the
overall value can be summed over the individual users. Additionally, a user may exit his browsing
session at any step – a classical assumption in web user modeling. Thus, the ad server faces a
tradeoff between advertiser requests consisting of short sequences with a high average value and
longer ones of high total value. The prototypical decision for the ad server then becomes: for each
request, decide whether and when to serve the request, and whether to pre-empt a slot sequence
currently in progress from a prior request.

1.1 Model

We abstract the following online job scheduling problem from this setting. At each step, the user
stops surfing with probability 1 − β (so the surfing time is a geometric random variable). Jobs,
which correspond to advertisers’ stories, arrive online. A job s has an arrival time as, a length
`s and a per-unit (or per impression) value vs. (In general, the per-unit values need not be the
same for all ads in a job; we discuss this in Section 4.) An input sequence Q is a set of jobs
{(vs, as, `s)}, and corresponds to the set of advertisers that arrive as the user surfs pages relevant
to them. Multiple realistic assumptions can be made about value derived from suspending and
restarting interrupted jobs – in this paper we assume that such suspension is not allowed. That is,
jobs can be interrupted, but once interrupted, no value can be obtained from its remaining units.

We investigate two models that differ in the maximum delay that can be allowed between the
arrival and scheduling of a job, corresponding to two natural models of storyboard a. In the no
deadlines model, a job s can be scheduled anytime after its arrival (here, advertisers are willing
to advertise to a user at any time t ≥ as after discovering that the user is relevant). In the
sharp deadlines model, a job s is lost unless scheduled immediately upon arrival at t = as (here,
advertisers lose interest in the user as soon as she navigates away from the relevant page).

1 In 2002 [11], the New York Times offered advertisers the opportunity to completely control the ads seen by
a particular user for a small number (4-8) of consecutive pages viewed by this user – the first instance of online
storyboarding.

1

A feasible schedule is one in which all scheduled units of a job are scheduled consecutively,
subject to the deadline constraint. The discounted reward VS from a feasible schedule S is its
expected value

∑∞
t=0 β

tv(t), where v(t) is the per-unit value of the job in progress at time t. We
want to design an online scheduler whose discounted reward is competitive against the discounted
reward of the (optimal) offline scheduler that knows the entire input sequence in advance. 2

1.2 Results and organization

We show that there is a sharp separation in the power of an online scheduler that has no deadlines
versus one with sharp deadlines: we give a constant competitive algorithm for the first case, whereas
we show that no randomized online algorithm can achieve better than a polylogarithmic ratio in
the second. Note that while an online scheduler with no deadlines can clearly obtain higher reward
than an online scheduler with sharp deadlines, the offline scheduler is correspondingly advantaged
as well, so it is not a priori obvious how the competitive ratios in the two models will compare.

• In the no-deadline model, we give a natural deterministic algorithm that is 7-competitive
against the offline scheduler (Section 2).

If the discount factor β = 1, the algorithmic problem in the no deadline model is trivial:
never preempt. For any β < 1, there is a preemption-delay tradeoff – the scheduler either has
to preempt the current job and lose all its remaining value, or has to delay the newly arrived
jobs and pay a (nonzero) delay cost due to the discount factor. (Observe that preemption
is “cheap” for β near 0 and delay is “expensive”, whereas the converse is true for β close to
1.) In fact, the problem has a discontinuity at β = 1 – while at β = 1, the trivial (online)
algorithm that never preempts is optimal, no deterministic algorithm can have a competitive
ratio better than (2 − 3ε) for β = 1 − ε, ε > 0, as the following example shows. The first
job arrives at time 0 with per-unit value 1 and infinite length. If the deterministic online
algorithm begins this job at time t, the adversary introduces a job at time t + 1 with value
1/(1− β) and length 1. The offline scheduler gets a total discounted reward of βt(β+β2)

1−β . The

deterministic algorithm can get no more than max
(
βt + βt+1 1

1−β ,
βt

1−β

)
= βt

1−β , which gives

a competitive ratio of β + β2 ≥ 2− 3ε for β = 1− ε. The intuition behind the discontinuity
is that for any β < 1, there is always a job with high enough value that makes preemption
worthwhile; this is not true for β = 1.

• In the sharp deadlines model, we adapt the proof from [3] to show that despite partial credits
and the discount factor, no online scheduler can achieve a reward better than a polylogarithmic
factor of the offline scheduler (Section 3).

• In Section 4 we consider a natural extension from the storyboarding application, with increas-
ing (rather than constant) per-unit values. For the extreme case where value is obtained only
when the job is finished, even with no deadlines, no online deterministic algorithm can achieve
any constant competitive factor with respect to the offline scheduler. However, we show that
constant competitiveness can be obtained when the lengths of the jobs are bounded, to give
a logarithmic approximation.

2Note that the offline solution does not know exactly when the user stops surfing, but only maximizes expected
value. An online scheduler is very limited with respect to the offline scheduler which knows the stopping time of the
user. These limitations are also observed in other online settings [1].

2

1.3 Related Work

See [6] for a survey of the vast literature on job scheduling. The main difference with our work
is the infinite horizon with discount factor β. Our main algorithmic results are in the no-deadline
model, which is trivial for β = 1 and has consequently not received attention in the literature.
Woeginger [12] studies the model closest to ours in terms of the feasibility of an allocation – this
is, in fact, the sharp deadline model with no partial credits at β = 1. However, the algorithmic
results in [12] are under restrictions on the input that are inapplicable in our setting; the hardness
results are for deterministic algorithms for β = 1 and no partial credits in the sharp deadline model.
As mentioned in Section 1.2, Cannetti and Irani [3] study lower bounds in the model with sharp
deadlines and no partial credit at β = 1. There has also been work in mechanism design which
involves online allocation problems [4, 9, 7, 5]. These models differ from ours in multiple ways,
most notably in not having a time-discounted infinite horizon. The discounted reward scenario has
been considered previously in settings other than job-scheduling [2].

2 A greedy algorithm for the no-deadline model

We now present a greedy algorithm for online job scheduling in the no-deadline model. There
are two aspects to consider – the preemption-delay tradeoff (since jobs cannot be resumed after
interruption), and the fact that jobs arrive online. In fact, the preemption-delay tradeoff is also
faced by an offline scheduler; we show in Appendix 5 that the offline problem is NP-complete, by
a reduction from subset-sum. The online arrival of jobs further compounds matters – in the no-
deadline case the online algorithm must decide whether to schedule a long job, or wait for imminent
high per-unit value jobs. When all jobs are available at time 0, the problem is easy:

Lemma 1. If all jobs are present at time 0, scheduling jobs in the decreasing order of their per-unit
values is optimal.

For a set of jobs S, let V (S) denote the reward obtained by scheduling jobs in S as in Lemma 1:
in computing V (S) we pretend that all jobs in S have arrival time 0.

In general, of course, there will be new arrivals while a job is in progress. At time t, let s be
the currently scheduled job with value vs and l′s remaining unscheduled units. Let At be the set of
all jobs with value higher than vs. The greedy decision at time t is based on comparing the reward
from preempting s and scheduling jobs in At immediately, to the reward from completing s and
then scheduling At. That is, we preempt s if

1− βl′s
1− β

vs + βl
′
sV (At) < V (At).

Rearranging the above inequality gives us the following rule for preemption:

vs < (1− β)V (At).

This rule simply compares the benefit from scheduling another unit of the current job, to the cost
of delaying the jobs in At by one step. The corresponding greedy algorithm, G, is given in Figure 1.
Note that At now only contains jobs that arrive after the current job is scheduled by G.

3

Algorithm G:

At each time t:
If no job is in progress,

Schedule a job with the highest per-unit value.
Otherwise, let s be the current job.

Let At be the set of all jobs with per-unit value higher than vs.
If vs < (1− β)V (At) then

Preempt s
Schedule a job with the highest per-unit value.

Otherwise, continue with the current job.

Figure 1: A greedy algorithm for the no-deadline model

2.1 Analysis

In this section, we prove that G is 7-competitive against the offline scheduler (Theorem 1). In fact,
we prove that G is 7-competitive against a stronger optimal scheduler O which is allowed to resume
jobs after interruption. The stronger scheduler is equivalent to modifying the input sequence Q to
replace each job (vs, as, `s) by `s jobs with length 1 and value vs: the optimal scheduler O greedily
schedules the available unit with highest value at each time. For simplicity of presentation, we
assume that all values vs are distinct3.

We denote by A(Q) the schedule returned by a scheduler A on an input Q, and by VA(Q) the
discounted reward from this schedule. When it is clear from the context, we use A to denote both
the schedule and the scheduler.

There are two factors that make G’s schedule suboptimal: preempted units that are never
scheduled, and units that are delayed. To analyze these, we first introduce a new input sequence
Q′′ with suitably delayed arrivals, as defined below. The idea behind the construction of Q′′ is
that, roughly speaking, G’s schedule is the same on Q and Q′′, and G is suboptimal with respect
to O(Q′′) due only to preempted units. In Lemma 6, we show VO(Q′′) ≤ 2VG . To account for the
delay cost, we now only need to relate VO(Q) to VO(Q′′) – we do this by introducing another input
sequence Q′, with some units arriving earlier than in Q, such that VO(Q′) ≥ VO(Q). We then relate
VO(Q′) to VO(Q′′) through Lemmas 2, 3, 4, and 5 to get the result in Corollary 1.

Note that with respect to the scheduler O, we can think of Q as a sequence of units instead of
a sequence of jobs. The arrival of the k’th unit of job s in Q is defined as as + k − 1. For job s,
let rs be the time at which G begins s, and es be the time at which the last unit of s is scheduled,
i.e., s is completed at es or preempted at es + 1. Also, define Ds to be a set of units such that each
unit i ∈ Ds satisfies the following properties:

1. O(Q) schedules i sometime between rs and es.

2. vi > vs.

3. If i belongs to job s′, then a′s > rs.
3One can perturb all values with arbitrary small noise.

4

Now, based on the schedule G for the input Q, we construct two sequences with modified arrivals,
denoted by Q′ and Q′′. If unit i belongs to Ds for a job s, then i arrives in Q′ at time rs. Also, the
arrival of i arrives in Q′′ at time es + 1. If i does not belong to Ds for any s, then its arrival time is
the same in Q, Q′ and Q′′. Let O(Q′) and O(Q′′) denote the schedules of O on the input sequences
Q′ and Q′′. Also, let r′i (resp. r′′i) be the time at which i is scheduled in O(Q′) (resp. O(Q′′)).

Lemma 2. If unit i does not belong to any set Ds, then r′′i ≤ r′i.

Proof. We prove the lemma by contradiction. Assume i is the first unit scheduled in O(Q′) such
that r′i < r′′i . Let j be the unit scheduled in O(Q′′) at time r′i. If i does not belong to any set Ds,
then it arrives at the same time in Q′ and Q′′. Therefore, for input Q′′ and at time r′i, O could
have scheduled unit i. Hence, we have vj ≥ vi. Consider the following cases.

1. Suppose vj > vi. Note that the arrival of every unit is Q′ is no later than its arrival in
Q′′. Also, O always schedules a unit with the highest value. Therefore, r′j < r′i = r′′j , which
contradicts the assumption that i is the first unit such that r′i < r′′i .

2. If vj = vi, then these units belong to the same job. Since O first schedules the unit with the
earlier arrival, we have r′j < r′i = r′′j , which again leads to a contradiction.

The lemma above gives us the following inequality.

VO(Q′) ≤
∑
s

∑
i∈Ds

βr
′
ivi + VO(Q′′) (1)

We show that
∑

s

∑
i∈Ds β

r′ivi ≤ VG + 2VO(Q′′). Let ls = es − rs + 1 denote the number of units
of job s scheduled by G. Note that∑

s

∑
i∈Ds

βr
′
ivi =

∑
s

(1− βls)
∑
i∈Ds

βr
′
ivi +

∑
s

βls
∑
i∈Ds

βr
′
ivi

We prove the claim by bounding each of term in the RHS above.

Lemma 3.
∑

s(1− βls)
∑

i∈Ds β
r′ivi ≤ VG

Proof. Recall that At is the set of all jobs that are available at time t and have per-unit value higher
than the current job. Let t = es. Observe that all units in Ds belong to the jobs in At. Therefore,
V (At) ≥ V (Ds). Because the algorithm did not preempt job s at time t, we have

vs ≥ (1− β)V (At) ≥ (1− β)V (Ds).

Therefore,
1− βls
1− β

vs ≥ (1− βls)V (Ds).

Summing up this inequality over all jobs s, we have

VG ≥
∑
s

(1− βls)
∑
i∈Ds

βr
′
ivi.

5

Now, we find a matching between units inDs and units inO(Q′′). Definemi to be the unique slot
i is matched to. The matching is constructed as follows. Let Ut be the sorted list of all unmatched
units up to time t; U0 is initialized to be the empty set. At each time t, add all unmatched units
from Ut−1 plus all units i such that i ∈ Ds and r′i + ls = t to Ut. Then, let j be the unit with the
highest value in Ut. Ties are broken in favor of units that arrive earlier in Q. Finally, let mj = t.

Lemma 4. For unit i ∈ Ds, we have mi ≤ r′′i .

Proof. First observe that for i ∈ Ds, r′′i ≥ r′i + ls. We prove the lemma by induction on the
scheduling time r′′i in O(Q′′) of a unit i ∈ Ut. The basis of the induction is trivial. Now, suppose
for all units j, r′′j < r′′i , we have mj ≤ r′′j . Suppose i has not been matched yet. Hence, i belongs
to Ur′′i . Observe that by induction hypothesis, all unmatched units in Ur′′i are available to O(Q′′).
Since O(Q′′)) schedules i at this time (r′′i), i has the earliest arrival among available units with the
highest value. Therefore, i also has the earliest arrival among units with the highest value in Ur′′i .
Thus, i would be matched at this step and we have mi = r′′i .

By the lemma above we have, ∑
s

∑
i∈Ds

βmivi ≤ VO(Q′′) (2)

Lemma 5.
∑

s

∑
i∈Ds(β

r′i+ls − βmi)vi ≤ VO(Q′′)

Proof. Consider unit j ∈ Ut. If no other unit is added to Ut, then j would be matched at time
t + πj − 1, where πj is the position of j in the sorted list Ut. Now suppose unit i is added to Ut
at this point (units are added to Ut in the order of increasing r′i). Then, the position to which j
would be matched increases by 1. Let nij be the slot that unit j would be matched to right before
i is added. Also, let n′ij be the slot that unit j would be matched to right after i is added. Note
that n′ij − nij ≤ 1. It is easy to see that we have∑

s

∑
i∈Ds

(βr
′
i+ls − βmi)vi =

∑
s

∑
i∈Ds

∑
j

(βnij − βn
′
ij)vj

Consider unit i ∈ Ds. Let i∗ be the unit that is scheduled in O(Q′′) at time r′i. Suppose for
unit j we have n′ij − nij = 1. Observe that by Lemma 4, we have vi∗ ≥ vj . Hence,∑

s

∑
i∈Ds

∑
j

(βnij − βn
′
ij)vj ≤

∑
s

∑
i∈Ds

∑
j

(βnij − βn
′
ij)vi∗

Also, note that for all units j such that n′ij − nij = 1, all values of nij ’s are unique, and are
greater than or equal to r′i + ls. Therefore, we have

∑
s

∑
i∈Ds

∑
j

(βnij − βn
′
ij)vi∗ ≤

∑
s

∑
i∈Ds

∑
t≥r′i+ls

(1− β)βtvi∗ =
∑
s

∑
i∈Ds

βr
′
i+lsvi∗ ≤

∑
s

∑
i∈Ds

βr
′
ivi∗

But, by definition of i∗,
∑

s

∑
i∈Ds β

r′ivi∗ ≤ VO(Q′′). Therefore,∑
s

∑
i∈Ds

(βr
′
i+ls − βmi)vi ≤ VO(Q′′)

6

Putting all lemmas above together we get a bound on the delay cost of G:

Corollary 1. VO(Q′) ≤ VG + 3VO(Q′′)

Next we handle the preemption cost.

Lemma 6. VO(Q′′) ≤ 2VG.

Proof. Note that every unit in O(Q′′) has the following property: either G schedules it no later
than O, or G never schedules it at all, i.e., the unit is preempted. Hence, we complete the proof of
the lemma by showing that the value of the preempted units is bounded by VG .

A preemption chain (s1, · · · , sn) is a sequence of jobs defined by the following properties. (i) s1
does not belong to any previous chain. (ii) Story si, 1 ≤ i ≤ n, is preempted at time ti. (iii) Let ki
be the sum of lengths of the jobs available at time ti that have higher per-unit value than si. For
each 1 ≤ i < n, ti < ti+1 ≤ ti+ki−1. (iiii) G does not preempt any job between tn and tn+kn−1.
Because the number of jobs is finite, chains are of finite length.

Consider a chain (s1, · · · , sn). Let An be the jobs with higher per-unit value than sn that are
available at time tn. Since sn is preempted, we have (1−β)V (An) > vsn . Also, because there is no
preemption between tn and tn + kn − 1, it is easy to see that the reward G obtains from the units
scheduled during this time is at least

βtnV (An) ≥ βtn(vsn/(1− β)) (3)

Note that the per-unit value of the jobs is increasing along a chain. Therefore, in O(Q′′) all
preempted units of s1, · · · , sn are scheduled after tn + kn − 1. Also, observe that the total reward
O could obtain from these jobs is βtn+kn(vsn/(1− β)). Plugging into (3) we get

βtn+kn(vsn/(1− β)) ≤ βtn(vsn/(1− β)) ≤ βtnV (An)

The lemma follows from summing this inequality over all chains.

Theorem 1. Algorithm G is 7-competitive against the offline scheduler.

Proof. Combining the results in Corollary 1 and Lemma 6, and using the fact that VO(Q) ≤ VO(Q′),
we get the above claim.

The lower bound of 2 for β→1 (Section 1) can be exhibited very simply for this algorithm, with
one job of infinite length and value v1 = 1 arriving at time 0, and a second job of length 1 and
value 1

1−β arriving at time 1.

3 A lower bound for the sharp-deadlines model

We now derive a lower bound on the competitiveness of any randomized online algorithm in the
model with sharp deadlines. Our construction is the same as that in [3]. However, our proofs require
more effort due to partial credits and the discount factor; as opposed to [3], the online algorithm
can now potentially utilize the partial credits to get closer to optimal, and the offline scheduler itself
becomes less advantaged in the presence of a discount factor, simply because the value from the
future gets discounted (e.g., when β → 0, the greedy algorithm is optimal). We show that, when
β is at least 3/4, despite partial credits and the discount factor, we can derive a poly-logarithmic

7

lower bound on the performance of any randomized online algorithm in the sharp-deadlines model.
The underlying intuition is that partial credits and the discount factor only add lower order terms
to the reward obtained by the online algorithm, in the lower-bound construction of [3].

Let vmax and vmin denote the maximum and minimum per-unit values, and Lmax and Lmin be
the maximum and minimum lengths of the jobs. Define µ = max

(
Lmax
Lmin

, vmax
vmin

)
. We construct a

family of examples for which no randomized online algorithm can achieve competitiveness better
than Ω

(√
log µ

log logµ

)
on these examples.

The construction of the lower bound is described in Appendix 6. It consists of a sequence of
oblivious adversaries, ADVi, defined recursively. Intuitively, adversary ADVi acts as follows: it orders
new jobs of type i; also if at any time the probability of the online algorithm working a job of
type i is higher than a certain threshold, it calls ADVi−1 to obtain jobs of shorter length but higher
per-unit value. The threshold function and the formal strategy of ADVi are defined in the Appendix,
where we also give the proof of the following theorem:

Theorem 2. When β ≥ 3/4, given any randomized preemptive scheduler, for the problem instance

generated by the family of adversaries ADVk, the competitiveness is at best Ω
(√

log µ
log logµ

)
.

Observe that if the per-unit value of all jobs differ by at most a constant factor λ, then the
algorithm that preempts the current story only if the new job is longer, is λ-competitive. Therefore,
using standard techniques, one can design a O(log vmax

vmin
)-competitive algorithm, see Section 4.2.

4 Increasing per-unit values

In the storyboarding application it is natural for advertisers to have increasing values for the ads
displayed in their sequence, particularly when the sequence of ads form a story. We now consider
the extreme case where advertisers derive value only when their entire story is shown without
interruption. Formally, each job (story) s is specified by a length `s and a final value fs. Note that
the value obtained from the first `s−1 units of the job is zero. The total value of job s (if started at
time zero) is equal to β`s−1fs. We focus here on the no-deadline model, since the sharp-deadlines
model with these valuations is similar to the model studied in [12, 3], despite the discount factor.

4.1 A lower bound

We first show that no deterministic algorithm can be constant competitive in this model. For
every c we construct an input sequence consisting of one long job and several short jobs, such that
preempting the long job at any step would lead to a ratio worse than c, and finishing the job leads
to a bad competitive ratio as well.

Theorem 3. For any constant c > 0, no deterministic algorithm can achieve a competitive ratio
of c with respect to the offline scheduler OPT.

Proof. Suppose a deterministic algorithm claims a ratio c. Consider an input in which there is
a job of length L (specified later) and total value V = 1, arriving at time 0. A stream of jobs
of length 1 each and value α/βi−1 arrives from time 1 onwards, until the deterministic algorithm
preempts the current job. If the deterministic algorithm never preempts the long job, the arrivals

8

never stop. The value of α is a function of c and will be chosen later. With these arrivals, at time
i, OPT obtains a reward of βi−1 α

βi−1 = α, so that its total value grows linearly with time.
We choose α to ensure that preempting at any point causes the deterministic algorithm to get

value below c times what OPT has already got so far: at time l, let OPT (l) denote the total
value that OPT gets using arrivals so far (including the long job); let Vp(l) denote the value from
preempting the long job at time l;

Vp(l) = βl−1α(
1

βl−1
+

β

βl−2
+ · · ·+ βl−1) = α(1 + β2 + · · ·+ β2l−2) =

α(1− β2l+2)
1− β2

.

Then, since V = 1,

OPT (l)
Vp(l)

=
αl + βlV

α1−β2l+2

1−β2

=
l(1− β2)
1− β2l+2

+
βl+1(1− β2)
α(1− β2l+2)

(4)

We want to choose α such that this is greater than c for all l. For l > c/(1 − β2), (4) is
greater than c, since the second term is positive. For smaller values of l, we choose α(c) to satisfy
β

c
1−β2 +1(1 − β2) > αc. This ensures that for all values of l, preempting the long job leads to an

approximation factor that is worse than c. We choose L to be large enough to ensure that the
approximation factor on delaying is also worse than c, i.e., such that

OPT (L)
Vd

=
αL+ βl

1 + α1−β2l+2

1−β2

> c.

4.2 A competitive algorithm

Now we present an algorithm for the case when the value of a job is obtained only after its last
unit is scheduled. Our algorithm is O(log fmax

fmin
)-competitive with respect to the offline scheduler,

where fmax = maxs{fs} and fmin = mins{fs}.
We first consider a special case of the model, in which all the values of fs are equal to 1. Observe

that if β ≤ 1
2 then the algorithm that always preempts in the favor of a job that finishes earlier

achieves a competitive ratio of 1
1−β ≥ 2. For β ≥ 1

2 , we propose the following algorithm, called C:
If there is no job in progress, schedule a job of the shortest length. Otherwise, let s be the current
job. Upon the arrival of a new job j, preempt s and schedule j if

`s
`j
>

1
1− β

Lemma 7. For β ≥ 1
2 , algorithm C is 122e−1

e−1 -competitive with respect to the offline scheduler OPT .

Proof. Most parts of the proof are similar to Theorem 1 and, therefore, are discussed briefly. First
assume the lengths of all jobs are bounded by 1

1−β . This assumption will be removed later.
For job s, define Ds to be the set of units that are scheduled by OPT at the time C schedules s.

Let r′i denote the time when OPT schedules unit i. Similar to Theorem 1, we find a matching from
units in Ds to units scheduled by C. Note that this optimal solution must schedule jobs without
interruption; we refer to units only for convenience.

9

Let U be the list of all unmatched jobs, initialized to be the empty set. Each unit i, in a set Ds,
is added to U at time r′i + `s. At each time t, units are removed from U in two ways: i) unit i is
displayed by C at time t. ii) unit i has the lowest r′i in U . In both of the cases above, i is removed
from U and we have mi = t.

By definition, we have mi ≤ ri, where ri is the time that C schedules unit i. Also, for every t,
there are at most two units i and j such that mi = mj = t. Note that we can replace each job of
length l with another job of per-unit value vs such that 1−β`s

1−β vs = β`s . Because neither C nor OPT
preempt any jobs, these replacements do not change the values of the schedules. Therefore,∑

i

βmivi ≤ 2VC (5)

Observe that after the replacements, at time t, the maximum value of a unit in U is at most the
value of the unit scheduled by C at time t. The reason is that units in U belong to the stories that
are available to C (or are currently being displayed); and C always chooses a job with the highest
value-per-unit. Therefore, similar to Lemma 5, we have that∑

s

∑
i∈Ds

(βr
′
i+`s − βmi)vi ≤ VC (6)

Also, because all lengths are bounded by 1
1−β , for β ≥ 1

2 , we have β`s ≥ β
1

1−β ≥ 1
4 . Therefore,∑

s

∑
i∈Ds

βr
′
i+`svi ≥

1
4
VOPT (7)

Now we remove that assumption that job lengths are bounded. For each length l, the total
reward that could be obtained from all jobs of length ≥ l

1−β is at most

β
l

1−β−1 1

1− β
l

1−β
≤ β

l
1−β−1 1

1− β
1

1−β
≤ (

1
1− 1

e

)β
l

1−β−1

Therefore, if the algorithm obtains the value of a job of length l, it can discard all jobs of length
> l

1−β , and still be constant competitive with respect to the offline scheduler. Now by plugging
in (5), (6), and (7), it is easy to see that this algorithm is 122e−1

e−1 competitive.

We can build on the above argument to give a O(log fmax

fmin
)-competitive algorithm, A, for the

no-partial-credit case. The argument is rather standard. We first partition the jobs in the optimal
solution into buckets based on fs into buckets [2i, 2i+1). There are log(fmax/fmin) such buckets.
Let Oi be the value that the optimal solution gets from jobs in bucket i, O =

∑
iOi. We randomly

choose a bucket j. The previous argument shows us that restricting the input to jobs in this bucket
gives us value at least Oj e−1

12(2e−1) , since the optimal solution with this input is at least Oj . Now,
the expected value we get is∑

i

1
log(fmax/fmin)

e− 1
12(2e− 1)

Oi ≥
e− 1

12(2e− 1)

∑
iOi

log(fmax/fmin)
=

e− 1
12(2e− 1)

O

12 log(fmax/fmin)
.

Theorem 4. Algorithm A is O(log(fmax/fmin))-competitive with respect to the offline scheduler in
the model with no deadlines and no partial credits.

10

References

[1] S. Ben-David, A. Borodin, R. Karp, G. Tardos, and A. Wigderson, On the Power of Random-
ization in On-Line Algorithms. Algorithmica, 11(1): 2-14, 1994.

[2] A. Blum, S. Chawla, D. R. Karger, T. Lane, A. Meyerson, and M. Minkoff. Approximation
algorithms for orienteering and discounted-reward tsp. SIAM Journal of Computing, 37(2):653–
670, 2007.

[3] R. Canetti and S. Irani. Bounding the power of preemption in randomized scheduling. SIAM
Journal of Computing, 27(4):993–1015, 1998.

[4] M. T. Hajiaghayi, R. Kleinberg, M. Mahdian, and D. Parkes. Online auctions with re-usable
goods. In EC ’05: Proceedings of the 6th ACM conference on Electronic commerce, pages
165–174, New York, NY, USA, 2005.

[5] M. T. Hajiaghayi, R. Kleinberg, and D. C. Parkes. Adaptive limited-supply online auctions.
In EC ’04: Proceedings of the 5th ACM conference on Electronic commerce, pages 71–80, New
York, NY, USA, 2004.

[6] A. W. Kolen, J. K. Lenstra, C. H. Papadimitriou, and F. C. Spieksma. Interval scheduling: A
survey. Naval Research Logistics, 54:530–543, 2007.

[7] R. Lavi and N. Nisan. Online ascending auctions for gradually expiring items. In SODA
’05: Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, pages
1146–1155, Philadelphia, PA, USA, 2005.

[8] marketingterms.com. Surround sessions.
http://www.marketingterms.com/dictionary/surround session.

[9] R. Porter. Mechanism design for online real-time scheduling. In EC ’04: Proceedings of the
5th ACM conference on Electronic commerce, pages 61–70, New York, NY, USA, 2004.

[10] PricewaterhouseCoopers. IAB internet advertising revenue report.
http://www.iab.net/media/file/IAB PwC 2007 full year.pdf.

[11] N. Y. Times. What is surround sessions?
http://www.nytimes.com/ads/marketing/surroundsessions.

[12] G. J. Woeginger. On-line scheduling of jobs with fixed start and end times. Theor. Comput.
Sci., 130(1):5–16, 1994.

11

5 The offline problem in no-deadline model is NP-Hard

Proposition 1. The problem of computing the optimal schedule of jobs, even when all arrivals are
known in advance, is NP-complete.

Proof. The proof is by reduction from subset-sum. The subset-sub problem is defined as follows:
given a set S of integers, and a sum b, is there a subset of S whose sum is b?

Given an instance of subset sum, for each ns ∈ S, define a job s of arrival time 0, vs = 1, and
length ns . Also, define a job of arrival time b and value M , where M is chosen large enough so
that the optimal schedule has to display M at b. If there is a subset of S with sum b, then the
value of the optimal schedule is

b−1∑
t=0

βt +Mβb +

P
si∑

t=b+1

βt

If there is no such subset, the reward of the offline scheduler is strictly less than this value.

6 Lower bound for the sharp-deadlines model

Our construction follows that of [3]. The proofs of the corresponding lemmas differ. For com-
pleteness, we still outline the construction, while pointing out the major differences. We define a
sequence of adversaries ADVi recursively. ADVi, when deployed against the randomized algorithm,
creates a family of examples giving a lower bound of γi where γi is defined in equation (8). Ad-
versary ADVi uses i + 1 types of jobs, the ith job having a length of Li = k4i and a per-unit value
vi = k2−2i. Thus the total value Vi = vi

1−βLi
1−β . A online randomized algorithm can be defined by

a time varying probability distribution {pi(t)} where pi(t) is the probability that the algorithm is
working on a job of type i at time t. We assume that the adversary has access to the probability
distribution {pi(t)} for every time step, but not to the actual coin-tosses of the algorithm. Also,
we assume that the discount factor β ≥ 3/4.

Intuitively, adversary ADVk acts as follows: it orders a new job of type k every `k steps; also
at every step, if the probability of the online algorithm working a job of type k is higher than a
certain threshold, it calls ADVk−1 to obtain jobs of shorter length but higher per-unit value. The
threshold function for ADVi is defined below, and the strategy of ADVi is presented in Figure 2. The
threshold function fi is:

fi(x) =

{
1− αie

γi−1
Vi

x
, if x ≤ Vi;

1− αieγi−1 , if x > Vi.

where αi = 2(1− γi + 2
k2) and

γi = γi−1

(
eγi−1

1 + γi−1eγi−1

)
+

1
k2

(8)

By Lemma 2 in [3], we have γk ≤ 4/
√
k. Let O(t) denote the maximum gain that can be

accrued by the jobs ordered up till time t, appropriately discounted by the factor β. We have the
same definitions of i-critical time units, and i-steps. For a k-step τ = [sτ , fτ] let hk(τ) be defined
as Ok+1(sτ)−Ok+1(sτ − 1). Similarly, we can partition the set of jobs from the input sequence S

12

Adversary ADVi:

At each time t:

If Li divides t,
Schedule a story of type i.

If i > 0 and qi(t) ≥ fi(Oi(t)),
call ADVi−1.

Figure 2: Strategy for ADVi

into regular and non-regular according to the definitions in [3], and can define EAτ (S) to be the
reward that scheduler A can get in expectation from the regular jobs requested during the time
interval τ in the request sequence S. We first bound the scheduler’s gain from these regular jobs.

Lemma 8. EAτ (S) ≤ γkhk(τ), where γk is defined as in Equation 8.

Proof. The inductive proof follows that of [3], Lemma 3. The cases for 0-th and 1-th adversary can
easily be shown. For the kth adversary, we assume a contradiction. We then construct a scheduler
A′ that mimics the scheduler A against the (k − 1)th adversary. We then show that this violates
the inductive hypothesis. The different cases are broken up as in [3] according to the nature of the
interval τ ; we only deal with cases that differ from those in [3].

Case 1. Step τ is not the first k-step. Case (1a) is trivial. For case (1b), we note that for
each impression of type i, the probability that A′ gets the value of the impression is pi(t)

1−pk(t) which
is 1

1−pk(t) of the probability of A getting the impression. If this impression is from the job c with
ending time ec, we have that pk(t) ≥ pk(ec), and thus 1− pk(t) ≤ 1− pk(ec) ≤ γk

γk−1
, and thus the

bound for case 1b holds as in the paper.
Case 2. In this case, τ is the first k-step, and thus the gain kk(τ) is from the first k-type job

that is ordered, at time 0. Thus, hk(τ) = Vk. We have to replace Equation 3.16 by the following

EAτ (S) ≤ Vkfk(Ok(t0)) +
l∑

i=1

EAτi(S) + vk

t0∑
t=0

βt−1pk(t)

Arguing similarly, we get an equation like (3.17),

EAτ (S)

≤ Vkfk(Ok(t0)) +
l∑

i=1

(1− pk(eτi))γk−1hk−1(τi) + vk

t0∑
t=0

βt−1pk(t)

≤ Vkfk(Ok(t0)) +
l∑

i=1

(1− pk(eτi))γk−1hk−1(τi) + vk

t0∑
t=0

βt−1

By the definition of a k-step, if |τ | denotes the end of k-step τ , then vk−1
∑|τ |

t=0 β
t−1 = Vk. Thus,

in the above expression, since t0 is either falls inside a k-step or is the very next step after it,

13

vk
∑t0

t=0 β
t−1 ≤ Vkvk/vk−1 ≤ Vk/k2. Hence,

EAτ (S) ≤ Vkfk(Ok(t0)) +
l∑

i=1

(1− pk(eτi))γk−1hk−1(τi) + Vk/k
2,

and we need to show that the above expression is at most γkVk. We show the proof in two parts.
We write the above expression as F +G where

F = Vkfk(Ok(t0)) +
l∑

i=1

(1− pk(sτi))γk−1hk−1(τi) (9)

G =
l∑

i=1

(pk(sτi)− pk(eτi))γk−1hk−1(τi) + Vk/k
2 (10)

We show that,

F ≤ (γk − 2/k2)Vk (11)

and

G ≤ 2Vk/k2 (12)

To start with,

F ≤ Vkfk(Ok(t0)) +
l∑

i=1

(1− pk(sτi))γk−1hk−1(τi)

≤ Vkfk(Ok(t0)) +
l∑

i=1

(1− fk(Ok(sτi)))γk−1hk−1(τi)

≤ Vkfk(Ok(t0)) + γk−1
1− β

β ln(1/β)

∫ Ok(t0)

0
(1− fk(y))dy

≤ Vk(1− αke
γi−1
Vk

Ok(t0)) + γk−1
1− β
β ln(1

β)

∫ Ok(t0)

0
αke

γk−1
Vk

y
dy

after converting the sum to an integral and substituting the value for fk in this range, since x ≤ Vk
for the first k-step. Denote x0 = Ok(t0). The above expression after integration becomes

F ≤ Vk(1− αke
γk−1
Vk

x0) + γk−1
1− β
β ln(1

β)
Vk
γk−1

(e
γk−1
Vk

x0 − 1)

≤ Vk

(
1− αk

1− β
β ln(1

β)
+ αke

γk−1
Vk

x0

(
1− β
β ln(1

β)
− 1

))

Now, note that in this range, e
γk−1
vk

x0 ≤ e. Also, 1−β
β ln(1

β
)
≥ 1. So the above expression is at

most Vk

(
1− αk 1−β

β ln(1
β

)
+ αke

(
1−β

β ln(1
β

)
− 1
))

. Now, for β ≥ 3/4, 1−β
β ln(1

β
)
≤ e−0.5

e−1 . Thus, F ≤

14

Vk(1 − αk/2) = vk(γk − 2
k2) by definition of αk, and hence we have proven Equation 11. For

Equation 12, the exact argument as in the paper shows that G ≤ Vk/k
2 + Vk/k

2 = 2Vk/k2. Thus,
we have the lemma.

Following Lemma 4 in [3], we know that the reward that the scheduler can obtain from the
non-regular jobs is also bounded, since the value that the offline scheduler can extract out of such
jobs is at most 1

k of the total optimal value. Thus, the reward that can be obtained by the our
randomized scheduler is certainly bounded by Ok

k , which gives us the the following theorem, restated
from Section 3.

Theorem 5. When β ≥ 3/4, for the problem instance generated by the family of adversaries ADVk,

any randomized preemptive scheduler is at most Ω
(√

log µ
log logµ

)
competitive.

Proof. From the Lemma 8 in the appendix 6, if we can employ an adversary of the kth level, then
we can show that the randomized scheduler is at most γk ≤ 4/

√
k competitive against optimal

for the request sequence that is generated by this adversary. Now, for this adversary, vmax
vmin

= k2k.

Thus, if m = k2k, we have that γk ≤ 4√
k
≤
√

log µ
log logµ . Similarly, Lmax

Lmin
= k4k also, giving us the

factor in the claim.

15

	Introduction
	Model
	Results and organization
	Related Work

	A greedy algorithm for the no-deadline model
	Analysis

	A lower bound for the sharp-deadlines model
	Increasing per-unit values
	A lower bound
	A competitive algorithm

	References
	The offline problem in no-deadline model is NP-Hard
	Lower bound for the sharp-deadlines model

