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ABSTRACT
Prosper, the largest online social lending marketplace with
nearly a million members and $178 million in funded loans,
uses an auction amongst lenders to finance each loan. In
each auction, the borrower specifies D, the amount he wants
to borrow, and a maximum acceptable interest rate R.
Lenders specify the amounts ai they want to lend, and bid
on the interest rate, bi, they’re willing to receive. Given that
a basic premise of social lending is cheap loans for borrowers,
how does the Prosper auction do in terms of the borrower’s
payment, when lenders are strategic agents with private true
interest rates?

The Prosper mechanism is exactly the same as the VCG
mechanism applied to a modified instance of the problem,
where lender i is replaced by ai dummy lenders, each will-
ing to lend one unit at interest rate bi. However, the two
mechanisms behave very differently — the VCG mechanism
is truthful, whereas Prosper is not, and the total payment of
the borrower can be vastly different in the two mechanisms.
We first provide a complete analysis and characterization
of the Nash equilibria of the Prosper mechanism. Next, we
show that while the borrower’s payment in the VCG mecha-
nism is always within a factor of O(logD) of the payment in
any equilibrium of Prosper, even the cheapest Nash equilib-
rium of the Prosper mechanism can be as large as a factor
D of the VCG payment; both factors are tight. Thus, while
the Prosper mechanism is a simple uniform price mecha-
nism, it can lead to much larger payments for the borrower
than the VCG mechanism. Finally, we provide a model to
study Prosper as a dynamic auction, and give tight bounds
on the price for a general class of bidding strategies.

1. INTRODUCTION
Social lending, or peer-to-peer lending, is an emerging

alternative to banks and personal loans, allowing individ-
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uals to lend/borrow money to each other directly without
the participation of traditional financial intermediaries. The
Internet has contributed significantly to the feasibility and
growth of social lending, by providing the technology for an
online marketplace to match lenders and borrowers. Social
lending offers borrowers the opportunity to obtain loans at
lower interest rates and costs, and lenders with an opportu-
nity for investments with higher rates of return than from
banks or other common alternatives. In this paper, we study
the auction mechanism used to finance loans by the largest
such social lending marketplace.

Social lending is now a large business on the Internet, with
an increasing number of companies such as Prosper (US) [2],
Zopa (UK) [3], and Lending Club [1], to name a few, offering
online social lending services. The total amount of money
borrowed using such peer-to-peer loans was approximately
$650 million in 2007, and is projected to reach $5.8 billion
in 2010. The number of users (borrowers and lenders) on
social lending websites is also staggering, with more than
one million members on Prosper and Zopa alone. Given
the large volume of trade, evidenced by the large number of
users and the vast sums of money being lent and borrowed,
social lending is clearly a significant component of electronic
commerce.

The largest social lending site in the US is Prosper, with
over 830, 000 members, and over $178 million in funded
loans. Prosper, which describes itself as an “eBay for loans”,
auctions off loans amongst interested lenders, using competi-
tion amongst lenders to bring down the final interest rate for
the borrower. Borrowers create loan listings, specifying the
amount of money they are willing to borrow and a reserve
interest rate, the maximum rate that they are willing to ac-
cept. Lenders choose individual listings to bid on, specifying
an amount and interest rate for each loan. In addition to
standard criteria such as credit scores and histories, lenders
can also consider a borrower’s personal story, endorsements
from friends, and group affiliations. The bidding starts at
the reserve rate, and lenders can then bid down the interest
rate in an auction. When the auction ends, Prosper com-
bines the bids with the lowest interest rates into a single
loan to the borrower and handles all loan administration
tasks including loan repayment and collections on behalf of
the matched borrower and lenders.

A basic premise of social lending is cheap loans for bor-
rowers. To what extent does the mechanism used to fund
loans lead to small borrower payments, given that lenders
act strategically, as selfish and rational agents? Each lender
has a private interest rate, which is the minimum interest



rate at which she is willing to invest in a particular loan.
While the Prosper mechanism certainly selects the lenders
with the lowest interest rates to finance the loan, this does
not necessarily lead to a cheap loan — the rate reported by
a lender need not be her true private interest rate, since re-
porting a higher interest rate might lead to a better return.
(That lenders are strategic is clearly evidenced by their be-
havior in Prosper: lenders are allowed to, and indeed do,
decrease their rates to increase their allocation through the
course of the auction.) Given that lenders behave strategi-
cally, how does the choice of a mechanism — that consists of
an allocation and payment rule — affect the total payment
of the borrower?

The auction used by Prosper, which is the primary focus
of this paper, turns out to be a fairly curious mechanism. It
is VCG-like, but not quite VCG — it is, in fact, a uniform
price mechanism obtained by applying VCG to a modified
instance of the problem, as described below. Suppose the
borrower wants to borrow an amount D, and each lender i
specifies her budget ai and her offered interest rate bi. Re-
place every lender i by ai dummy lenders with budget 1 and
interest rate bi each. Now run VCG on this new instance to
determine the winners and their payments. Recall that the
VCG mechanism to buy k identical items from competing
sellers (here, k = D and each item is a unit of money) buys
from the k cheapest sellers and pays each of them the same
price, which is the bid of the (k+1)-th lowest bid. Thus, ap-
plying VCG to the modified instance yields a solution where
all winning lenders receive the same interest rate, which is
either the bid of the first loser or the last winner, depending
on whether or not the last winner exhausts her budget. Of
course, the VCG mechanism can also be applied directly to
the input (ai, bi) without modification, yielding an incentive
compatible mechanism.

1.1 Overview of Results
We first provide a complete analysis of the Nash equilib-

ria of the Prosper mechanism modeled as a one-shot auc-
tion game of complete information (§3). Since the Prosper
mechanism is a uniform price mechanism (i.e., every winner
receives the same interest rate, also called the price), and we
are interested in the borrower’s payment, we focus on the set
of possible prices that can arise in a Nash equilibrium. We
first show that computing the Nash equilibria with the small-
est and largest prices (or equivalently, total payments) is, in
general, NP-hard, and hard to approximate within any rea-
sonable factor. However, this hardness vanishes when losers
are restricted to bid their true interest rate1 — in this case,
we show how to completely characterize the equilibria of the
Prosper mechanism. Finally, as we show in §3.2, this char-
acterization can be sharpened further if we restrict ourselves
to equilibria where winners do not bid less than their true
interest rates.

Next we compare the Prosper mechanism against the
VCG mechanism from the perspective of the borrower’s pay-
ment (§4). As the Prosper mechanism is not incentive com-
patible, we compare the payment in the best and worst Nash
equilibria of the Prosper mechanism against that of the VCG
outcome. While no mechanism dominates the other, the
VCG mechanism leads to a payment that is always within a

1Note that the true interest rate is indeed the lowest safe
bid for a loser if other lenders deviate unexpectedly from an
equilibrium.

factor of O(logD) of the cheapest Nash equilibrium of the
Prosper mechanism, whereas even the cheapest Nash equi-
librium of the Prosper mechanism can be as large as a factor
D of the VCG payment (both factors are tight). A similar
result holds for the worst Nash equilibrium of the Prosper
mechanism.

In §5, we investigate two other natural uniform price
mechanisms that are closely related to Prosper, and com-
pare their equilibria and payments. Finally in §6, we ex-
amine the Prosper mechanism when modeled as a dynamic
auction, and provide tight bounds on the price for a general
class of bidding strategies.

1.2 Related Work
While social lending is a large and growing aspect of com-

merce on the Internet, it has received only limited attention
in the research literature. The most relevant work is that of
Freedman and Jin [9], where the authors examine the func-
tioning of Prosper based on transaction data. They estab-
lish relations between interest rates, actual returns, default
rates, and credit grades, and compare them with loans con-
tracted in traditional banks. However, their work is entirely
empirical and does not attempt to model or analyze the
mechanisms of social lending from a theoretical standpoint.

The auction used in Prosper is a particular instance of
a uniform price reverse auction with multi-unit demand.
While multi-unit auctions have been well-studied in the eco-
nomics literature (see, for example, Krishna [13]), they dif-
fer from our work in two ways. First, most work on uniform
price auctions focuses on the unit-demand setting, where
each bidder is interested in only one item (this case corre-
sponds to the VCG mechanism as we note above). In con-
trast, bidders in Prosper generally have multi-unit demand
(or rather supply, since Prosper is a reverse auction). The
fact that bidders desire more than one item makes the in-
centives very different compared to those of the single-unit
demand setting. Uniform price auctions for multi-unit de-
mand have been studied as well, but either the mechanism
used is different from Prosper, or the setting is different (for
instance, Draaisma and Noussair [?] studied a uniform price
auction where bidders’ demands are restricted to at most
two units); also, equilibrium characterizations are usually
very partial and complex.

Second, the economics literature has typically focused on
characterizing Bayes-Nash equilibria whereas in this paper,
we will focus on Nash equilibria. Indeed, the Prosper mech-
anism is dynamic, in the sense that lenders can get infor-
mation on other lender’s bids and modify their own bids
through the course of the auction. In such cases, it is prefer-
able to model the auction as a one-shot game of complete
information, as Varian observes for the similar situation of
auctions for online advertising [15]. This is in part moti-
vated by the fact that, even with minimal knowledge about
one’s opponent, strategies of rational players in a repeated
game converge to a Nash equilibrium of the one-shot game
(Kalai and Lehrer [11]). Also, we will be particularly in-
terested in worst-case comparisons between the borrower’s
payment in different mechanisms, an approach more specific
to the computer science literature.

Finally, our work is similar in spirit to the literature on
frugal mechanism design for hiring a team problems, which
studies mechanisms with small payments for the buyer in a
reverse auction. In the hiring a team problem [4, 14, 8, 7,



10, 12, 6], a principal wants to hire a team of selfish agents
at a low cost to perform a task, each agent having a private
cost for performing her sub-task. Only feasible teams are
able to complete the task. In the context of social lending,
one can consider lenders as agents, and a feasible team is
simply one whose total budget is greater than or equal to the
borrower’s demand. However, our work differs significantly
from the hiring a team literature: the system of feasible sets
in our setting is quite different from that considered in the
frugality literature and the existing results do not apply to
the feasible sets of our social lending setting. Second, we
do not attempt to derive the optimal incentive compatible
frugal mechanism, but rather examine the most commonly
used social lending mechanism, and compare it with other
natural alternatives.

To the best of our knowledge, this is the first paper to
study the auction mechanisms used in social lending.

2. PRELIMINARIES
In this paper, we focus on a single auction corresponding

to a single loan. The borrower wants to borrow an amount of
money D, hereafter referred to as the demand. He also has a
reserve interest rate R, which is the maximum interest rate
he is willing to pay for the loan. Multiple lenders, denoted
by L1, . . . , Ln, compete to finance the loan. Each lender Li
specifies the amount ai she’s willing to lend (referred to as
her budget), and her bid bi, which is the interest rate she
seeks from her loan. The demand D and the budgets ai are
integers, i.e., they are expressed in cents (or the smallest
unit of currency). We assume that the budgets ai are public
information, i.e., lenders do not behave strategically with
respect to their budgets, and that R and D are publicly
known, i.e., the borrower is not strategic. Finally, we assume
that there is no lender with monopoly; that is, for any j,∑
i6=j ai ≥ D.
A mechanism for this setting computes an allocation and

“price” for each lender, given the lenders’ budgets a1, . . . , an,
and bids b1, . . . , bn. The allocation for lender Li, 0 ≤ xi ≤
ai, is the amount borrowed from lender Li, and the price2 pi
is the effective interest rate3 at which the lender will be paid
back by the borrower. In our analysis we require that the
total allocation exactly funds the loan, that is,

∑
i xi = D

(note that the no-monopoly assumption guarantees that this
is possible). Also, to ensure voluntary participation, we will
require that pi ≥ bi. We say that lender Li is a winner if
she receives a positive allocation xi > 0.

We suppose that every lender Li has a private true interest
rate ri. This could be, for instance, the rate of return that
the lender expects to get if she chooses an alternative invest-
ment option. Other factors such as the risk associated with
a particular loan (that is, the risk of the borrower defaulting
on the loan) could also affect the true rate ri. However, our
purpose is not to determine how the lender decides on his
private interest rate; rather, we simply take it as given.

Lenders are rational, which means they act to maximize
their utility given their true interest rates. The utility of
lender Li is defined as

ui = xi(pi − ri) .
2Note the distinction between the payment and the price:
the payment is the product of the allocation and the price.
3The effective interest rate is the ratio of the payment to
the allocation.

All the mechanisms we consider in this paper will use the
following allocation rule.

Definition 2.1. (Allocation A(b), Last Winner
and First Loser). Given a bid profile b = (b1, . . . , bn),
order lenders so that b1 ≤ b2 ≤ · · · ≤ bn. Let k =
min{j |

∑j
i=1 ai ≥ D, j = 1, . . . , n}. Then the allocation

A(b) is defined as xi = ai for i < k, xk = D −
∑k−1
i=1 ai,

and xi = 0 for i > k. We refer to Lk as the last winner and
Lk+1 as the first loser.

Note that there is at most one lender — the last winner —
who might not exhaust her budget.

Throughout the paper we will use k as index for the last
winner and k + 1 as index for the first loser. Note also that
the ordering and index of lenders can change from one bid
profile to another.

When multiple lenders bid the same interest rates, a fixed,
preannounced tie-breaking rule is necessary. To maximize
clarity of presentation, we use a tie-breaking rule which has
oracle access to lenders’ true interest rates. (Ties between
lenders with the same true interest rate are broken arbitrar-
ily.) While oracle access might appear to be a very strong
assumption, all of the results in our paper hold, up to mod-
ification by ε, for any fixed preannounced tie-breaking rule,
as explained in the footnote below4.

For completeness, we recall the definition of a Nash equi-
librium.

Definition 2.2 (Nash equilibrium). A bid profile
b = (b1, . . . , bn) is a Nash equilibrium if no lender can in-
crease her utility by unilaterally changing her bid, that is,
keeping the bids of other lenders fixed.

Given a set of bids from lenders, how should one select the
winners and decide their respective interest rates? While
all the mechanisms investigated in this paper have the same
allocation rule, they differ in their payments.

VCG Mechanism. The VCG mechanism is incentive com-
patible, i.e., it is a dominant strategy for every lender to
report her true interest rate ri.

Definition 2.3 (Set ∆ and bid profile r). Define
a bid profile r = (r1, . . . , rn) (i.e., everyone bids truthfully).
The VCG allocation is computed according to A(r) by
Definition 2.1. We denote by ∆ the set of VCG winners.

The VCG payments are computed as follows. Let ∆(j)
be the set of winners in VCG after removing lender Lj from
the group of lenders, and let xi(j) be the allocation of each
Li ∈ ∆(j). Observe that ∆ ⊂ ∆(j)∪{Lj}. The net payment
to lender Lj in the VCG mechanism is∑

Li∈∆(j)

bixi(j)−
∑
Li∈∆

bixi + bjxj .

4Two alternative treatments are to discretize the bidding
space to multiples of ε (as is actually the case in Prosper,
where ε = 0.05), or to consider ε-Nash equilibria. With
the first, every Nash equilibrium with price p (using oracle
access) translates to a Nash equilibrium with price p or p−ε,
depending on the particular tie-breaking rule used; with the
second, a Nash equilibrium at price p translates to either a
Nash or an ε-Nash equilibrium at the same price. See [10,
12] for more discussions on tie-breaking rules.



Note that the VCG mechanism is not a uniform price mech-
anism. Indeed, the (effective) prices associated with the
VCG payments given above are not necessarily the same for
all winning lenders.

First Price Auction. Another natural mechanism is the
“first price” auction: the allocation is according to A(b),
and each winner is paid his offered interest rate bi. The first
price auction is clearly not incentive compatible; it also need
not have a Nash equilibrium. In fact, unlike other settings
where the first price mechanism admits an ε-Nash equilib-
rium (such as single item auctions or path auctions [10]), in
our setting it need not even have an ε-Nash equilibrium, as
the following example shows.

Example 2.1. Let D = 15 and suppose there are three
lenders L1, L2, L3, with budgets a1 = a2 = a3 = 10, and
interest rate r1 = r2 = 0.1, r3 = 0.5. Assume ties are
broken according to L1 > L2 > L3. For any given ε > 0,
consider the bid b1 made by L1. If b1 = 0.1, then L2 will bid
b2 = 0.5 to obtain 5 units of allocation with a total utility of
5 · (0.5− 0.1) = 2. If b1 = 0.5, then L2 will bid b2 = 0.5− ε,
to obtain 10 units of allocation with a total utility of 4−10ε.
If 0.1 < b1 < 0.5, then L2 will set either b2 = 0.5 to obtain
5 units of allocation or b2 = b1 − ε to obtain 10 units of
allocation, whichever utility is larger. Given the interest b2
set by L2, lender L1 will set either b1 = 0.5 or b1 = b2,
whichever utility is larger. Thus, the strategies of L1 and L2

form a loop and there is no ε-Nash equilibrium.

Note that the choice of tie-breaking rule is not the reason
the first price mechanism does not have an ε-Nash equilib-
rium; it is easy to see that this example does not have an
ε-Nash equilibrium for any tie-breaking rule.

The Prosper Mechanism. Given a bid profile b, the
mechanism used by Prosper, denoted by PROSPER, is the
following.

• Allocation: PROSPER computes the allocation according
to A(b) (recall Definition 2.1).

• Pricing : If xk = ak, i.e., the last winner exhausts her
budget, the price to each winner is the bid of the first
loser, i.e. pi = bk+1 for i = 1, . . . , k. We will refer to
this interest rate as the price throughout. If xk < ak,
i.e., the last winner does not exhaust her budget, the
price to all winners is the bid of the last winner, i.e.
pi = bk for i = 1, . . . , k.

PROSPER is not truthful for the same reason that the
first price auction is not: for example, suppose there are
two lenders L1 and L2 with a1 = D + 1, r1 = 1 and
a2 = D + 1, r2 = 2. Then L1’s utility is greater when bid-
ding b1 = 2 than when bidding (truthfully) b1 = 1 (note
that ties are broken by L1 > L2). However, as we will see
shortly, PROSPER always has a Nash equilibrium, unlike the
first price auction.

3. EQUILIBRIUM ANALYSIS
In this section, we will analyze the Nash equilibria of

PROSPER. We are interested in the borrower’s total payment,
and PROSPER is a uniform price mechanism. We therefore fo-
cus on characterizing the set of prices that can arise at an

equilibrium. We will refer to the equilibrium with the small-
est price as the cheapest Nash equilibrium, and to that with
the largest price as the worst Nash equilibrium.

We start by showing that, while we can always construct
a Nash equilibrium, computing the cheapest — or worst
— equilibrium is hard. This hardness disappears when re-
stricting ourselves to a natural subset of equilibria — that
where losers bid their true interest rate. We then provide
a complete characterization of all equilibria in §3.1. Finally
we show in §3.2 that our characterization can be sharpened
even further when, in addition, we assume that winners bid
at least their true rate.

We will assume throughout that losers bid at least their
true value, i.e., bi ≥ ri if xi = 0. While our characterization
easily extends to equilibria when losers can bid less than
their true value5, we do not include this case since bidding
less than the true value is an unsafe bidding strategy for
losers who obtain zero utility anyway. For instance, suppose
a winning lender exits the market, Li could then become
a winner at an interest rate strictly less than her private
interest rate, leading to negative utility.

Our first result is that PROSPER admits a Nash equilibrium,
in contrast to the first price auction.

ALG-GREEDY

1. Define a bid profile b = r = (r1, . . . , rn).

2. Repeat the following until convergence:

If there is Li ∈ ∆ such that Li can in-
crease utility by increasing her bid uni-
laterally in the profile b, increase bi to
the utility-maximizing point and update b.

3. Output the bid profile b.

Proposition 3.1. ALG-GREEDY returns a Nash equilib-
rium of PROSPER.

Proof. Denote by b the profile generated by ALG-

GREEDY. Note that any lender Li ∈ ∆ who increases her
bid in Step 2 becomes the last winner in the current bid
profile. Let Lk denote the last winner in b. Observe that
all lenders in ∆ are winners and Lk ∈ ∆, since ALG-GREEDY

starts with the profile of true rates, and only lenders in ∆
can increase their bids to become the last winner.

First, no lender can obtain more utility by increasing her
bid in b — by definition, no winner in ∆ wants to increase
her bid; if winners not in ∆ increase their bid higher than bk,
their allocation falls to zero. On the other hand, all losers
bid their true interest (since we start with the profile b = r)
and all winners other than Lk exhaust their budget, so they
do not have an incentive to decrease their bid. For Lk, by the
rule of ALG-GREEDY, Lk is the last lender in ∆ who moves her
bid up to the point where her utility is maximized. Hence,
she cannot obtain more utility by decreasing her bid, and so
b is a Nash equilibrium.

While it is pleasant that PROSPER always has a Nash equi-
librium, computing the cheapest and worst Nash equilibrium
is, in general, NP-hard as the following results show.

5Rather than only the prices in Lemma 3.2, we obtain in-
tervals of prices corresponding to each equilibrium price in
the restricted setting.



Theorem 3.1. The computation of a cheapest Nash equi-
librium of PROSPER is NP-hard. Furthermore, for any poly-
nomial time computable function f(n), it does not admit
any approximation algorithm within a ratio of f(n), unless
P=NP.

Proof. We reduce from Partition: Given an instance of
Partition with a set of integers S = {x1, . . . , xn} where∑n
i=1 xi = 2N , we ask if S can be partitioned into two

subsets such that the sum of the numbers in each subset is
N . Assume without loss of generality that 1 ≤ xi ≤ N , for
i = 1, . . . , n.

We construct an instance of our problem as follows: Let
M , f(n). For i = 1, . . . , n, there is a lender Li with budget
ai = xiM and interest ri = 0. Further, there are two extra
lenders L0 and Ln+1 with budget a0 = MN + 1, an+1 =
3MN , and interest r0 = 0, rn+1 = 1, respectively. Let
D = 2MN + 1. We claim that it is NP-hard to distinguish
whether the total payment of the cheapest Nash equilibrium
is smaller than or equal to 2MN+1

MN+1
or at least 2MN + 1.

Assume that there is a partition of S into S1 and S2 such
that the sum of the numbers in each subset is N . We con-
struct a bid profile b as follows: Let bi = ri for i = 0, n+ 1,
bi = 0 if xi ∈ S1 and bi = 1

MN+1
if xi ∈ S2. Given b,

as a0 +
∑
i:xi∈S1

ai = 2MN + 1 = D, the winners are L0

and those corresponding to the set S1 and all winners ex-
haust their budget. Thus, the price to each winner is 1

MN+1

and the utility of L0 is a0 · 1
MN+1

= 1. If L0 increases

her bid b0 (to a point at most bn+1 = 1 to remain to be
a winner), her payment is at most 1 and utility is at most
1 · (D −

∑
i:xi∈S ai) = D − 2MN = 1, which implies that

L0 has no incentive to change her bid. Further, it is easy to
see that the lenders corresponding to the set S1 do not have
an incentive to change their bid as well. For each lender Li,
xi ∈ S2, although Li can reduce her bid to 0 to be a winner,
the price to winners becomes 0 as well, which leads to a 0
utility to Li. Therefore, no lender can unilaterally increase
her utility and b is a Nash equilibrium with a total payment
of D · 1

MN+1
= 2MN+1

MN+1
.

On the other hand, assume that there is no such a
partition of S such that the sum of the numbers in
each subset is N . Consider any Nash equilibrium b =
{b0, b1, . . . , bn, bn+1}. If Ln+1 is a winner, then the price
to each winner is at least 1 and we are done. Thus, it is safe
to assume that Ln+1 is not a winner. It follows that L0 must
be a winner. Let Lj be the last winner in b. If Lj exhausts
her budget, as D − a0 = MN , the set of winners excluding
L0 defines a partition of S with sum N , a contradiction to
our assumption. Hence, it suffices to consider the case where
Lj does not exhaust her budget. By the rule of PROSPER,
the price to each winner is bj . It can be seen that bj > 0
(otherwise, as argued above, L0 can increase her bid to 1 to
obtain a positive utility). In addition, if there is Li, xi ∈ S,
such that Li is not a winner, then Li can reduce her bid to
bj − ε to be a winner with positive payment and utility, a
contradiction. Thus, all lenders L1, . . . , Ln are winners. As
xi ≤ N for i = 1, . . . , n, the last winner Lj has to be L0.
In this case, by the property of Nash equilibrium, bj ≥ 1,
which implies that the total payment to winners is at least
1 ·D = 2MN + 1.

Hence, it is NP-hard to distinguish whether the total pay-
ment of the cheapest Nash equilibrium is smaller than or
equal to 2MN+1

MN+1
or at least 2MN+1. As 2MN+1

(2MN+1)/(MN+1)
=

MN + 1, it is NP-hard to approximate the total pay-
ment of the cheapest Nash equilibrium within a ratio of
Ω(M) = Ω(f(n)).

The computation of a worst Nash equilibrium is NP-hard
as well, as the following result shows.

Theorem 3.2. The computation of a worst Nash equi-
librium of PROSPER is NP-hard. Furthermore, it does not
admit any approximation algorithm within any ratio, unless
P=NP.

The reductions used to prove Theorems 3.1 and 3.2 above
illustrate an interesting fact about PROSPER: While no lender
with ri > p can be a winner in a Nash equilibrium with price
p, the converse is not true: not every lender with ri < p
need be a winner. This is in contrast with other uniform
price mechanisms, as we will see in §5.

3.1 Characterizing Equilibria
The hardness in the previous results arises entirely be-

cause losers can bid strictly higher than their true rate. We
now consider equilibria where losers bid exactly their true
interest rate6 — for this case, we characterize exactly the
set of prices that can arise in a Nash equilibrium. Note that
winners can, and indeed do, bid less than their true value in
certain equilibria (see Examples 3.1 and 3.2)

Definition 3.1 (Index α, α+ 1 and β). Given bid
profile r, we use α to denote the index of the last VCG
winner and α+ 1 to denote the index of the first VCG
loser.

For each Lj ∈ ∆, let Lβj be the last VCG winner when the
set of lenders is restricted to {L1, . . . , Lj−1, Lj+1, . . . , Ln},
i.e., it is the smallest index k such that

∑k
i=1,i 6=j ai ≥ D.

Define β = maxLj∈∆ βj.

Here β is the index of the last lender whose bid affects
the VCG payment of some VCG winner (alternately, it is
the largest index of lenders who enter the VCG solution if
any VCG winner is removed from the market). For exam-
ple, suppose that D = 11, with 5 lenders L1, . . . , L5, with
respective budgets a1 = 6, a2 = 5, a3 = 4, a4 = 3, a5 = 12,
and interest rates r1 < · · · < r5. Then ∆ = {L1, L2}, α = 2,
α+ 1 = 3 and β = 4. Now if instead a3 = 2, then β = 5.
Note that α, α+ 1 and β are independent to the real bids bi
and only depend on the true interests ri of lenders. An im-
portant implication is that Lβ /∈ ∆. As we will see, α, α+ 1

and β play a crucial role in characterizing the equilibria of
PROSPER.

We now prove a sequence of lemmas about the equilibria
in PROSPER.

Lemma 3.1. In any Nash equilibrium b with price p, any
lender Li with ri < p is a winner.

Lemma 3.2. The price p in any Nash equilibrium b of
PROSPER satisfies rα+1 ≤ p ≤ rβ. Furthermore, p = rj for
some Lj with rα+1 ≤ rj ≤ rβ.

6As before one can argue that losers should indeed bid their
true interest — while bidding strictly higher than ri never
causes negative utility, it can potentially hurt the lender’s
chance of obtaining positive utility if some winner exits the
market.



The lemma above is crucial and characterizes the set of
possible prices that can arise in an equilibrium. The next
lemma follows easily from the previous ones.

Lemma 3.3. For any Nash equilibrium with price p, there
exists a Nash equilibrium with the same price and where all
lenders in ∆ are winners.

The lemmas above clearly bring out the difference between
equilibria where bi = ri for losers, and those where losers
bid bi ≥ ri — as the example in the hardness reduction
of Theorem 3.1 shows, these claims are false for the latter,
more general case.

It is tempting to think that we may assume without loss
of generality that every winner other than the last winner
bids her true rate, since the actual bid value of such a winner
affects neither the set of winners nor the price. However, as
the example below shows, this is not true: while increasing
the bid to the true rate indeed does not change the allocation
or the price, the resulting profile is no longer an equilibrium.

Example 3.1. Suppose D = 11. There are four lenders
with a1 = 5, r1 = 0.5; a2 = 10, r2 = 1; a3 = 5, r3 = 2 and
a4 = 10, r4 = 7.1. For example, bid profile b = (2, 0, 2, 7.1)
is a Nash equilibrium with allocation x1 = 1 and x2 = 10.
Actually, it can be seen that it is a cheapest Nash equilibrium
as well. Note that if L2 was to bid at least her true value
1, L1 has no incentive to increase her bid any more, and
thus L2 will have to increase her bid to 7.1 to maximize her
utility.

Note that in the above example, there is no equilibrium
at price 2 with every winner bidding at least her true rate.
While winners’ bids in a Nash equilibrium can, in general, be
quite complicated, the following simple equivalence holds.

Lemma 3.4. Suppose that b = (b1, . . . , bk, rk+1, . . . , rn)
is a Nash equilibrium where L1, . . . , Lk are winners
and Lk is the last winner. Then the profile b′ =
(0, . . . , 0, bk, rk+1, . . . , rn) (i.e., every winner except the last
winner bids 0) constitutes a Nash equilibrium with the same
allocation and price.

Proof. It is easy to see that both b and b′ have the
same allocation and price to winners, which is at least bk.
By Lemma 3.1, we know that for any Li, i = k + 1, . . . , n,
ri ≥ bk. As all losers and the last winner Lk bid the same
value in b and b′, it is easy to see that no lender has an
incentive to increase her bid in b′ to obtain more utility. In
addition, by the fact that b is a Nash equilibrium, it can be
seen that lenders L1, . . . , Lk−1, Lk+1, . . . , Ln cannot obtain
more utility by decreasing their bid. For Lk, even if Lk is
able to reduce her bid down to 0, either the price drops to
0 as well (if Lk does not exhaust her budget in b) or her
allocation does not change (if Lk exhausts her budget in b).
Thus, Lk cannot obtain more utility by decreasing her bid.
Therefore, b′ is a Nash equilibrium with the same allocation
and price as b.

The lemmas above give us the following algorithm to com-
pute Nash equilibria. The algorithm essentially checks all
possible pairs of last winners and prices, for every lender in
∆ and every price rj , rα+1 ≤ rj ≤ rβ — note that the price
in each b(k, rj) ∈ S is exactly rj .

ALG-PROSPER

1. Let S = ∅.
2. For each Lk ∈ ∆ and rj ∈ {r` | L` : rα+1 ≤ r` ≤ rβ}

• define a bid profile b(k, rj) where

– bi = 0 for each Li with ri < rj, i 6= k;

– bk = rj;

– bi = ri for each Li with ri ≥ rj, i 6= k;

• If Lk is the last winner in b(k, rj) and it is
a Nash equilibrium, let S ← S ∪ b(k, rj).

3. Output S.

As there are n lenders in the market, β − α < n, ALG-

PROSPER runs in polynomial time.

Theorem 3.3. Set S computed by ALG-PROSPER consti-
tutes Nash equilibria with all possible prices.

Proof. Consider any Nash equilibrium b =
(b1, . . . , bk, rk+1, . . . , rn) where L1, . . . , Lk are winners
and Lk is the last winner. Let p be the price of b and
assume without loss of generality that bk ≤ rk+1 ≤ · · · ≤ rn.
Note that rα+1 ≤ p ≤ rβ . By Lemma 3.4, it suffices to
consider Nash equilibrium b′ = (0, . . . , 0, bk, rk+1, . . . , rn).
Note that the lender Lk belongs to ∆: by Lemma 3.3, all
lenders of ∆ are winners. Since those lenders are enough
to fulfill the demand, the last winner must be one of them.
As b is a Nash equilibrium, p = rk+1 anyway (no matter
whether Lk exhausts her budget or not). Hence, b(k, rk+1)
is a Nash equilibrium as well, i.e. b(k, rk+1) ∈ S.

Why do we need to check all possible pairs of last winners
and prices? The example below shows that this is necessary
in general.

Example 3.2. Let D = 12. There are five lenders with
r1 = 0, a1 = 10; r2 = 1, a2 = 3; r3 = 2, a3 = 1;
r4 = 2.9, a4 = 1 and r5 = 4, a5 = 12, respectively. In this
example, it can be seen that the cheapest Nash equilibrium is
b = (0, 2.9, 0, 2.9, 5) with a total payment of 12 · 2.9 = 34.8,
where L1, L2, L3 are winners with allocation 10, 1, 1, respec-
tively. An interesting fact of b is that L3 is even not a VCG
winner. To obtain positive utility, L3 reduces her bid to 0,
which drives L2 to increase her bid to 2.9. However, if win-
ners have to bid at least their true value, L2 only wants to in-
crease her bid to r3 = 2 with an allocation of 2. In this case,
the utility of L1 is 10 ·2 = 20 and she will increase her bid to
r5 = 4 to obtain an utility of (D−a2−a3−a4)·4 = 7·4 = 28.

Essentially, there can exist bullying equilibria, where
lenders with high interest rates (L3 in the above example)
bid zero and force lender L2 to hold up an interest rate that
would not otherwise belong to the set of utility maximiz-
ing bids for her. Restricting winners to bid at least their
true value removes such equilibria and allows us to provide
a sharper characterization, as we will see in the following
subsection.

The characterization in Theorem 3.3 easily gives the
cheapest and worst Nash equilibria as the smallest and high-
est prices in S. In fact, the worst Nash equilibrium always
has price rβ .



Theorem 3.4. Let Lj ∈ ∆ be the lender where Lβ is a
VCG winner by lenders {L1, . . . , Lj−1, Lj+1, . . . , Ln}. Then
the bid profile b = (b1, . . . , bn), where bi = 0 if ri < rβ and
i 6= j, bj = rβ and bi = ri if ri ≥ rβ and i 6= j, is a worst
Nash equilibrium with price rβ.

3.2 Winners Bid at Least Their Private Rates
We have, until now, placed no restrictions on the winners’

bids at all — specifically, a winner may bid strictly less than
her true interest rate to increase her allocation and utility in
an equilibrium. (For instance, in Example 3.1, by bidding
0, L2 obtains an utility of 10 · (2− 1) = 10.) However, such
a bidding strategy also carries the risk of negative utility:
suppose a new lender L5 with budget a5 = 5 and bid b5 = 0.5
enters the market in Example 3.1. Then L2 remains a winner
but receives price 0.5, which is less than her true interest
rate r2 = 1, leading to negative utility. This motivates the
study of the special case where winners bid no less than
their true interest rates (we continue to assume that losers
bid truthfully).

This allows us to consider a much smaller subset of pairs
of last winners and prices to characterize all equilibria, as
outlined below. Starting with the profile r of true interest
rates, let Vi be the subset of values to which each lender
Li ∈ ∆ is willing to increase her bid to be the last winner,
given the bids of other lenders. We will show that if any
of these lenders deviates to bid one of these values, the set
of values to which other lenders want to move up does not
change much at all — it either shrinks or stays the same,
but no new value is added to it. This will allow us to show
that the set of prices in equilibria is a subset of

⋃
Li∈∆ Vi.

Our first lemma is very similar to Lemma 3.4.

Lemma 3.5. Suppose that b = (b1, . . . , bk, rk+1, . . . , rn) is
a Nash equilibrium where L1, . . . , Lk are winners and Lk is
the last winner.

• If Lk does not exhausts her budget, then the profile
b′ = (r1, . . . , rk−1, bk, rk+1, . . . , rn) (i.e., every lender
except Lk bids her true interest) is a Nash equilibrium
with the same allocation and price.

• If Lk exhausts her budget, then b′ =
(r1, . . . , rk, rk+1, . . . , rn) (i.e., every lender bids
her true interest) is a Nash equilibrium with the same
allocation and price.

Consider a bid profile b = (b1, . . . , bn). For each lender Li,
define a set of values Vi(b) where b′i ∈ Vi(b) if (i) b′i > bi,
(ii) when bidding b′i, Li is the last winner and does not
exhaust her budget, and (iii) b′i is the bid that maximizes
her utility (i.e. ui(b

′
i) ≥ ui(b) for any b, and in particular,

ui(b
′
i) ≥ ui(bi)). If Vi(b) 6= ∅, we say that Li is weakly

willing to increase her bid. Intuitively, if Li is weakly willing
to increase her bid, then either she can obtain more utility
by increasing her bid or the utility of other lenders can be
increased without hurting her own utility.

Lemma 3.6. Given a bid profile r = {r1, . . . , rn}, let T =
{Li | Vi(r) 6= ∅}. For each Lj ∈ T , let bj ∈ Vi(r) be an
arbitrary value in Vi(r). Define a profile

b(j, bj) = (r1, . . . , rj−1, bj , rj+1, . . . , rn)

and let

T (j, bj) = {Li | Vi(b(j, bj)) 6= ∅}

be the set of lenders who are weakly willing to increase their
bids in b(j, bj). Then for any Lj ∈ T ,

(a) T (j, bj) ⊆ T .

(b) Li /∈ T (j, bj) for any Li ∈ T , i 6= j, with bi ≤ bj.

(c) Vi(b(j, bj)) = Vi(r) for any Li ∈ T (j, bj), i 6= j.

In the above lemma, Fact (a) tells us that the set of
lenders who are weakly willing to increase their bid does
not expand if some winner increases her bid. Fact (b) says
if a lender Lj ∈ T with larger bj increases her bid, then all
other lenders Li ∈ T with smaller bi will not increase their
bids any more. Fact (c) says that if Li is still weakly willing
to increase her bid after another lender Lj ∈ T increases her
bid, the set of values to which Li is weakly willing to move
will not change.

The following corollary follows immediately.

Corollary 3.1. Any sequence of moves starting with
r = {r1, . . . , rn}, where a move consists of a lender Li ∈
T (b) increasing her bid to any b ∈ Vi(b) where b is the
current bid profile, converges to a Nash equilibrium.

Let V = {v1, v2, . . . , vm} =
⋃
Li∈T Vi(r) where values are

ordered by v1 < v2 < · · · < vm. Note that m ≤ n. For
each vj ∈ V , let f(j) be the index of the lender where
vj ∈ Vf(j)(r). (If there are multiple such lenders, pick one
arbitrarily.) That is, vj is a value to which lender Lf(j) is
weakly willing to move. Given Lemma 3.6, we can charac-
terize the cheapest and worst Nash equilibrium easily.

Theorem 3.5. The following results hold:

• The cheapest Nash equilibrium is either r or given by
the smallest index `, 1 ≤ ` ≤ m, where b(f(`), v`) is a
Nash equilibrium.

• The worst Nash equilibrium is either b(f(m), vm) or r
(if V = ∅).

4. COMPARING PROSPER AND VCG
In this section, we compare the total payment of VCG

with that of PROSPER, in a setting where losers bid at least
their true interest rate and with no restrictions on winners’
bids (i.e., the most general setting considered in § 3). For
any given instance, let CNE(PROSPER) and WNE(PROSPER) de-
note the total payment of the cheapest and worst Nash equi-
librium of PROSPER, respectively. Let VCG denote the total
payment of VCG.

Theorem 4.1. The following inequalities hold

1

D
· CNE(PROSPER) ≤ VCG ≤ O(logD) · CNE(PROSPER)

Proof. Consider any cheapest Nash equilibrium b∗ =
(b∗1, . . . , b

∗
k) of the PROSPER. Let x∗ be the vector of al-

locations and p∗ be the price to all winners in b∗. As-
sume without loss of generality that lenders are ordered by
r1 ≤ · · · ≤ rn.

By Lemma 3.2, we know CNE(PROSPER) ≤ D · rβ . On the
other hand, by the definition of β, rβ will be counted in the
total payment of some VCG winner in ∆ (recall that ∆ is
the set of winners by VCG), which implies that rβ ≤ VCG.



Hence, CNE(PROSPER) ≤ D ·rβ ≤ D ·VCG. It remains to prove
the second inequality of the claim.

Let xi be the allocation of each Li by VCG. As D is the
total demand, we know xi ≤ D. For each Li ∈ ∆ \ {Lα},
define an ordered multi-set Si with |Si| = xi by

Si =
{ total of aα−xα︷ ︸︸ ︷

rα, . . . , rα ,

total of aα+1︷ ︸︸ ︷
rα+1, . . . , rα+1,

total of aα+2︷ ︸︸ ︷
rα+2, . . . , rα+2, . . . . . .

}
That is, Si contains aα − xα many rα’s, aα+1 many rα+1’s,
aα+2 many rα+2’s, and so on, until the size of Si is xi. Define
an ordered multi-set Sα with |Sα| = xα by

Sα =
{ total of aα+1︷ ︸︸ ︷
rα+1, . . . , rα+1,

total of aα+2︷ ︸︸ ︷
rα+2, . . . , rα+2, . . . . . .

}
That is, Sα contains aα+1 many rα+1’s, aα+2 many rα+2’s,
and so on, until the size of Sα is xα. By the rule of VCG, we
know that the payment to each winner Li ∈ ∆ is the sum
of elements in Si.

For each Si, denote its σ-th element by fi(σ), σ =
1, . . . , xi, and let φi = arg maxσ=1,...,xi(xi − σ + 1)fi(σ).
That is, φi is the index that gives the maximum payment
(not utility!) obtainable if Li increases her interest unilater-
ally. Let λi = (xi − φi + 1)fi(φi). Hence, the total payment
of VCG satisfies

VCG =
∑
Li∈∆

xi∑
σ=1

fi(σ)

=
∑
Li∈∆

(
1 · fi(xi) +

1

2
· 2fi(xi − 1) + · · ·+ 1

xi
· xifi(1)

)

≤
∑
Li∈∆

((
1 +

1

2
+ · · ·+ 1

xi

)
· max
σ=1,...,xi

(xi − σ + 1)fi(σ)

)
=

∑
Li∈∆

O(log xi) · λi

≤ O(logD)
∑
Li∈∆

λi

On the other hand, consider the price p∗ to all winners in
b∗. We divide the lenders in ∆ into two groups:

∆1 = {Li ∈ ∆ | p∗ < fi(φi)}

and

∆2 = {Li ∈ ∆ | p∗ ≥ fi(φi)}
For each Li ∈ ∆1, we claim that the total payment (not

utility!) that Li obtains in b∗ is at least λi. Otherwise,
Assume that there is Lj ∈ ∆1 such that the total payment
that Lj obtains in b∗ is smaller than λj . Note that the
utility of Lj in b∗ is uj(b

∗) = x∗j · (p∗ − rj) = x∗jp
∗ − x∗j rj ,

where x∗jp
∗ is the total payment that Lj obtains. By the

assumption, we know x∗jp
∗ < λj . As b∗i ≥ ri for any loser Li,

when Lj increases her bid to fj(φj) in b∗, the total payment
she obtains is at least λj . On the other hand, when the bid
of Lj increases, the allocation of Lj , x

∗
j , is not increasing.

Since

utility = total payment − allocation× true interest

we know that the utility of Lj increases, a contradiction to
the fact that b∗ is a Nash equilibrium. It follows that

CNE(PROSPER) ≥
∑
Li∈∆1

total payment to Li ≥
∑
Li∈∆1

λi

For lenders in ∆2, observe that

CNE(PROSPER) = D · p∗

≥ p∗ ·
∑
Li∈∆2

xi

≥ p∗ ·
∑
Li∈∆2

(xi − φi + 1)

≥
∑
Li∈∆2

(xi − φi + 1)fi(φi)

=
∑
Li∈∆2

λi

Therefore,

CNE(PROSPER) ≥ 1

2

∑
Li∈∆

λi ≥
1

O(logD)
VCG

which completes the proof of the theorem.

The inequalities in the above theorem are tight. Consider
the following two examples:

• Let D = 10m + 1, where m is an arbitrary positive
integer. There are six lenders with budget a0 = 5m+1,
a1 = m, a2 = a3 = a4 = 3m, a5 = 11m and interest
r0 = r1 = r2 = r3 = r4 = 0 and r5 = 1. It is easy to
see that VCG = 1, where the only lender that obtains
positive utility is L0 who gets a payment of r5 = 1.
Note that a1 +a2 +a3 +a4 = 10m and there is no way
to partition {L1, L2, L3, L4} into two groups such that
the sum of budgets of each partition is 5m. By the
reduction shown in Theorem 3.1, the cheapest Nash
equilibrium has a price 1 to each winner, which implies
that the total payment is D. Hence, CNE(PROSPER) =
D · VCG.

• Let D = n. There are n + 1 lenders L0, L1, . . . , Ln
with budget a0 = n and ai = 1 for i = 1, . . . , n.
Let r0 = 0 and ri = n

n−i+1
for i = 1, . . . , n. In

VCG, L0 wins and the total payment is
∑n
i=1 riai =∑n

i=1
n

n−i+1
= O(n logn). It can be seen that the

profile (r0, r1, . . . , rn) is a Nash equilibrium. There-
fore, the total payment is D · r1 = n and VCG =
O(logD) · CNE(PROSPER).

For this general setting, i.e., where losers can bid higher
than their true value, the worst-case ratio between the worst
Nash equilibrium of PROSPER and VCG can be arbitrarily
large as the reduction in the proof of Theorem 3.2 shows. If
losers bid their interest rate truthfully, we have the following
result, similar to Theorem 4.1 (again, the bounds are tight).

Theorem 4.2.

1

D
· WNE(PROSPER) ≤ VCG ≤ O(logD) · WNE(PROSPER)

5. OTHER UNIFORM PRICE MECHA-
NISMS

PROSPER is a uniform price mechanism, meaning that all
winning lenders receive the same price. How does it compare
to other uniform price mechanisms? Here there are two
natural candidates — pay all winners the bid of the last
winner (denoted by BLW), and pay all winners the bid of



the first loser (denoted by BFL). Both mechanisms have the
same allocation rule as PROSPER (as in Definition 2.1), but a
slightly different pricing rule. The mechanism BLW offers a
price equal to the bid of the last winner, while BFL offers a
price equal to the bid of the first loser. Note that the price of
PROSPER is either that of BLW or BFL, depending on whether
or not the last winner exhausts her budget.

If all “items” were identical, meaning that every lender
had a budget of one, BFL would be identical to VCG, which
produces an efficient allocation amongst lenders. As the fol-
lowing example shows, however, BFL is in fact very different
from VCG in terms of efficient allocation: since the price is
determined by the bid of the first loser, every winner has
an incentive to bid as low as possible to increase her allo-
cation when the total budget of winners is greater than the
demand. Specifically, as long as the bid of the first loser
is at least her true interest rate, a winner loses nothing by
bidding as low as 0 to improve her allocation.

Example 5.1. Let D = 11. There are four lenders with
budgets a1 = 3, a2 = 4, a3 = 5, a4 = 10 and interest rates
r1 = 1, r2 = 2, r3 = 3, r4 = 4, respectively. The only equi-
librium of BFL has L1, L2, L3 bidding 0 and the losing lender
L4 bidding her true value, and the allocation determined ac-
cording to the given tie-breaking rule. (As otherwise, the
lender not exhausting her budget can always reduce her bid
to 0 and increase her allocation, with no change in price
which remains at b4 = 4.)

Thus, which winner has leftover budget is entirely deter-
mined by the tie-breaking rule, which can be, in general, ar-
bitrary: even when the winners of BFL are exactly the VCG
winners, lenders with lower interest rates do not necessarily
receive a better allocation, leading to inefficiency. Note that
this does not happen in either PROSPER or BLW, where the last
winner never bids below her true interest rate7. Specifically,
in the above example, both PROSPER and BLW have efficient
equilibria, while BFL does not.

We now investigate BLW. As the following results show,
BLW is very similar to PROSPER: the set of equilibria of BLW is
a subset of that of PROSPER, and when losers are restricted to
bid their true values (as in § 3.1), the equilibria are identical.

Similar to Lemma 3.4 (and its proof), we have the follow-
ing result.

Lemma 5.1. Suppose b = (b1, . . . , bk, bk+1, . . . , bn) is
a Nash equilibrium of BLW, where L1, . . . , Lk are win-
ners and Lk is the last winner. Then the profile b′ =
(0, . . . , 0, bk, rk+1, . . . , rn) (i.e., every winner bids 0 except
Lk) constitutes a Nash equilibrium with the same allocation
and price.

Theorem 5.1. Any bid profile that is an equilibrium of
BLW is also an equilibrium in PROSPER. Moreover, if we
restrict ourselves to bid profiles where losers bid their true
value, every equilibrium in PROSPER is also one in BLW, so
that both sets of equilibria are identical.

When losers can bid any value greater equal their true
interest rates (that is, they are not restricted to bidding

7Strictly speaking, this holds for PROSPER only when the sum
of the budgets of winners exceeds demand D. If it is equal to
D, the last winner exhausts her budget anyway, and bidding
lower than her true interest rate does not change anything.

truthfully), the cheapest Nash equilibrium of PROSPER can
be a factor D smaller than the cheapest equilibrium of BLW;
conversely, the worst Nash equilibrium of PROSPER can be
arbitrarily larger than the worst equilibrium of BLW. This
follows directly from the examples of the hardness reductions
in Theorems 3.1 and 3.2.

6. DYNAMIC PROSPER MECHANISM
Lenders can actually change their bids in Prosper after

observing the current allocation and price, until the auction
is closed. The actual process used by Prosper to clear each
loan is as follows: bidding starts at the reserve rate spec-
ified by the borrower. Lenders submit their budgets and
bids, and an allocation and a price is computed according
to the one-shot auction PROSPER (defined in § 2). Lenders
may submit new bids until the auction closes, as long as
the new bid is at least a minimum increment (0.05 points in
Prosper) below the current price. The allocation and price
are recomputed (according to PROSPER) each time when a
lender changes her bid. The winners’ allocation and price
are announced publicly at each time, as also the bids of losers
(the budgets of all lenders are displayed publicly throughout
the auction). Note that the real bids of the winners are not
revealed publicly.

Our static auction model described in § 2 is easily ex-
tended to account for this dynamism. For simplicity, we
will consider discrete times t = 0, 1, . . . , T . At t = 0, the
borrower publicly announces the demand D and the reserve
interest rate R. Each lender Li submits an initial bid at
t = 1, b

(1)
i ; at subsequent times, lenders may decide to either

lower their bid, or to maintain their most recent offer. We
only allow bids that are multiples of the minimum increment
ε > 0 (equivalently, if a lender wants to reduce her bid, she
must reduce it by at least ε). The budget ai of each lender Li
is common knowledge. At every time t, the one-shot auction
PROSPER is used to determine the allocation and price for the

bid profile (b
(t)
1 , . . . , b

(t)
n ) (as before, we assume a fixed, pre-

announced tie-breaking rule). We assume without loss of
generality that the bid profile must not be equal in two con-

secutive rounds, i.e. (b
(t)
1 , . . . , b

(t)
n ) 6= (b

(t+1)
1 , . . . , b

(t+1)
n ) 8.

The winners at time t are announced publicly, as well as
the price offered to winners and the bids of losers. The
final outcome of the auction is the outcome of the last one-
shot auction PROSPER at time T , and the price at that time
is called final price. We refer to this dynamic process as
PROSPER DYNAMICS. In this section, we index the lenders so
that r1 ≤ r2 ≤ · · · ≤ rn.

We first provide bounds on the final price under a very
general and plausible assumption on bidding behavior: Con-
sider a lender Li whose utility is zero in the current round
— if decreasing her bid will strictly increase her utility, as-
suming other lenders’ bids remain unchanged, she will do so.
This is a natural assumption, since if the other bids remain
unchanged or decrease, Li cannot get a positive utility any-
way. Naturally lenders do not wish to end up with a negative
utility, so similar to § 3 we also assume that they never bid
less than their true interest. Note that VCG winners are al-

8Since bids are decreasing and bounded below by zero, they
must converge in a finite number of rounds for any given
ε > 0, no matter what strategy lenders decide to follow; we
assume that T is large enough so as to allow convergence in
all cases.



ways among the winning lenders of PROSPER DYNAMICS, how-
ever there may be more winners. We bound the final price
as stated below.

Theorem 6.1. The final price of PROSPER DYNAMICS is
between rα and rβ.

Note that the lower bound is slightly different from
Lemma 3.2 for the equilibria of PROSPER, where the price
is bounded below by rα+1.

We now consider lenders with two special types of bidding
behaviors: myopic greedy behavior and conservative behav-
ior. We will show that, for both cases, the final price is more
constrained, to be either the lowest or highest possible value
in the range of possible prices.

Myopic greedy lenders try to maximize their utility in
the next round, under the assumption that the price of the
current round remains unchanged. Such lenders choose to
either keep the same bid for the next round when they can-
not increase their utility, or decrease their bid just below the
current price when this would allow them to get more alloca-
tion. Formally, a sequence of bids corresponds to a myopic

greedy behavior when, for all Li, b
(1)
i = R; and for all t > 1,

if x
(t)
i < a

(t)
i and p(t) − ε ≥ ri, then b

(t+1)
i = p(t) − ε; oth-

erwise b
(t+1)
i = b

(t)
i . We show that, when all lenders follow

myopic greedy strategies, the price converges to the lowest
possible rate.

Theorem 6.2. If all lenders are myopic greedy, then the
winners are ∆ (i.e. the set of VCG winners) and the final
price is rα+1 when all winners exhaust their budget and rα
otherwise.

Interestingly, when all lenders are myopic greedy, the final
outcome is exactly the same as that in PROSPER when all
lenders bid their true interest rate (of course, this need not
be an equilibrium bid profile in PROSPER).

Conservative lenders attempt to maximize their final util-
ity at the last round under worst-case assumptions about
other lenders’ true interest rates. The worst-case scenario
for a lender Li occurs when every other winner has a true
interest less than Li’s interest rate. When this is the case, a
lender should never decrease her bid when she has a positive
utility in the current round, otherwise she can decrease it by
the minimum increment ε (as long as it is above her true in-
terest rate). Formally, a sequence of bids corresponds to a

conservative bidding behavior when, for all Li, b
(1)
i = R,

and for all t > 1, b
(t+1)
i = b

(t)
i if x

(t)
i > 0 or b

(t)
i = ri; and

b
(t+1)
i = b

(t)
i − ε otherwise. When all lenders follow con-

servative bidding strategies, the final price is the maximum
possible price.

Theorem 6.3. If all lenders are conservative, then the
final price is no less than rβ − ε.

A natural question to ask is how the borrower’s payment
in PROSPER DYNAMICS compares with that in VCG (the VCG
mechanism also has a dynamic implementation for this set-
ting, see [5]). However, we show that no mechanism domi-
nates the other, in the sense that the total payment to the
lenders in PROSPER DYNAMICS can be larger than that in VCG
mechanism and vice-versa, depending on bidder behavior.

• Let D = 15 and R = 10. There are three lenders
L1, L2, L3 with respective budgets a1 = 14, a2 =
2, a3 = 20 and interest rates r1 = δ, r2 = 2δ, r3 = 1.
The VCG allocation is then x1 = 14, x2 = 1, x3 = 0,
and the VCG payment to L1 is 2δ · 2 + 13 · 1, while the
payment to L2 is 1. In PROSPER DYNAMICS, if lenders
play myopic greedy strategies, the price is δ and so the
total payment is 15 ·2δ, which can be arbitrary smaller
than the VCG payment when δ tends to 0.

• Assume that the demand is any D > 0, and con-
sider D + 1 lenders, with respective budgets a1 =
D, a2 = · · · = aD = 1, aD+1 = 2D, and interest rates
r1 = δ, r2 = 2δ = · · · = rD = 2δ, rD+1 = 1. The
total VCG payment is then 2δ · (D − 1) + 1, while in
PROSPER DYNAMICS with conservative bidders, the to-
tal payment is D · 1. As δ tends to 0, the ratio be-
tween PROSPER DYNAMICS and VCG payment tends to
D. Note that the ratio cannot be greater than D as in
all cases VCG allocates at least one unit of demand at
rate rβ .

Acknowledgements
The authors are grateful to Preston McAfee for helpful com-
ments.

7. REFERENCES
[1] www.lendingclub.com.

[2] www.prosper.com.

[3] www.zopa.com.

[4] A. Archer and E. Tardos. Frugal Path Mechanisms. In
Proceedings of the 13th Annual Symposium on
Discrete Algorithms, pages 991–999, 2002.

[5] L. Ausubel. An Efficient Ascending-Bid Auction for
Multiple Objects. American Economic Review,
94(5):1452–1475, 2004.

[6] N. Chen and A. Karlin. Cheap Labor Can Be
Expensive. In Proceedings of the 18th Annual
Symposium on Discrete Algorithms, pages 707–715,
2007.

[7] E. Elkind. True Costs of Cheap Labor are Hard to
Measure: Edge Deletion and VCG Payments in
Graphs. In Proceedings of the 6th ACM Conference on
Electronic Commerce, pages 108–116, 2005.

[8] E. Elkind, A. Sahai, and K. Steiglitz. Frugality in
Path Auctions. In Proceedings of the 15th Annual
Symposium on Discrete Algorithms, pages 701–709,
2004.

[9] S. Freedman and G. Jin. Do social networks solve
information problems for peer-to-peer lending?
evidence from prosper.com. Working Papers 08-43,
NET Institute, Nov. 2008.

[10] N. Immorlica, D. Karger, E. Nikolova, and R. Sami.
First-Price Path Auctions. In Proceedings of the 6th
ACM Conference on Electronic Commerce, pages
203–212. ACM New York, NY, USA, 2005.

[11] E. Kalai and E. Lehrer. Rational Learning Leads to
Nash Equilibrium. Econometrica, 61:1019–1019, 1993.

[12] A. Karlin, D. Kempe, and T. Tamir. Frugality of
Truthful Mechanisms. In Proceedings of the 46th
Annual IEEE Symposium on Foundations of
Computer Science, pages 615–626, 2005.



[13] V. Krishna. Auction Theory. Academic Press, 2002.

[14] K. Talwar. The Price of Truth: Frugality in Truthful
Mechanisms. Proceedings of the 20th Annual
Symposium on Theoretical Aspects of Computer
Science, pages 608–619, 2003.

[15] H. Varian. Position Auctions. International Journal of
Industrial Organization, 25(6):1163–1178, 2007.

APPENDIX
Supplementary material

A. PROOFS IN SECTION 3

A.1 Proof of Theorem 3.2
Proof. We reduce from Partition: Given a set of integers

S = {x1, . . . , xn} where
∑n
i=1 xi = 2N , can S be partitioned

into two subsets such that the sum of the numbers in each
subset is N? Assume without loss of generality that 1 ≤
xi ≤ N , for i = 1, . . . , n.

We construct an instance of our problem as follows: For
i = 1, . . . , n, there is a lender Li with budget ai = xi and
interest ri = 0. Let D = N and R = 1. We claim that it
is NP-hard to distinguish whether the total payment of the
worst Nash equilibrium is either 0 or N .

Assume that there is a partition of S into S1 and S2 such
that the sum of the numbers in each subset is N . We con-
struct a bid profile b as follows: Let bi = ri if xi ∈ S1 and
bi = R = 1 if xi ∈ S2. Given b, as

∑
i:xi∈S1

ai = N = D,
the winners are those corresponding to the set S1 and all
winners exhaust their budget. Thus, the price to each win-
ner is 1. It is easy to see that no winner is willing to increase
her bid. Additionally, if any loser Li reduces her bid to 0,
even if Li becomes a winner, since the price is reduced to
0 as well, Li still obtains 0 utility. Hence, no lender can
unilaterally increase her utility and b is a Nash equilibrium
with a total payment of D · 1 = N .

On the other hand, assume that there is no such a parti-
tion of S such that the sum of the numbers in each subset
is N . Consider any Nash equilibrium b = {b1, . . . , bn}. Let
Lj be the last winner in b. If Lj exhausts her budget, then
the set of winners constitutes a partition of S with sum N ,
a contradiction to our assumption. Hence, Lj does not ex-
haust her budget. By the rule of PROSPER, the price to each
winner is bj . If bj > 0, we claim that all lenders L1, . . . , Ln
are winners. Otherwise, if Li is not a winner (which implies
that bi ≥ bj), by reducing her bid to bj − ε > 0, Li becomes
a winner with price at least bj − ε, a contradiction to the
fact that b is a Nash equilibrium. However, if all lenders
are winners, we know that

∑
i:i 6=j ai =

∑
i:i 6=j xi < D = N .

Because
∑n
i=1 xi = 2N , we have xj > N , a contradiction to

our assumption. Hence, bj = 0, which implies that the total
payment to winners is 0.

Hence, it is NP-hard to distinguish whether the total pay-
ment of the worst Nash equilibrium is 0 or N , which implies
that we do not have any approximation algorithm within
any ratio, unless P=NP.

A.2 Proof of Lemma 3.1
Proof. The claim follows directly from the assumption

that all losers bid their true interest and the definition of
the mechanism: for any lender Li with ri < p, if Li is not a

winner, we know Li bids her interest truthfully. This implies
that the price p is at most ri, a contradiction.

A.3 Proof of Lemma 3.2
Proof. (a) We start with the lower bound, p ≥ rα+1.

By contradiction, suppose that p < rα+1 for some Nash
equilibrium. Note that since any VCG loser has an interest
rate greater than p, any VCG loser is a loser. It is easy to
see that p ≥ rα as otherwise, by the definition of α, the total
demand cannot be fulfilled. If p = rα, the last VCG winner
Lα obtains zero utility, and thus is willing to increase her
bid to rα+1 to obtain positive utility. If rα < p < rα+1, by
Lemma 3.1, all lenders of ∆ are winners. Hence, the last
winner does not exhaust her budget and would profit from
increasing her bid to rα+1, a contradiction.

(b) We now deal with the upper bound, p ≤ rβ . By con-
tradiction, suppose that p > rβ for some Nash equilibrium.
Let Lk be the last winner. By Lemma 3.1, we know that
all lenders Li with an interest ri ≤ rβ < p are winners. In
particular, lenders in ∆∪{Lβ} are winners, implying by Def-
inition 2.3 that Lk ∈ ∆. This contradicts to Definition 3.1
of β.

(c) It remains to prove that p = rj for some Lj with
rα+1 ≤ rj ≤ rβ . If p 6= rj for any Lj with rα+1 ≤ rj ≤ rβ ,
as all losers bid their true interest, the only possible case is
that the last winner Lk does not exhaust her budget and
hence p = bk. In this case, however Lk will always increase
her bid to the point which equals the bid of the first loser,
a contradiction.

A.4 Proof of Lemma 3.3
Proof. From Lemma 3.2, p ≥ rα+1. If p > rα+1, then by

Lemma 3.1 all lenders with an interest rate less than or equal
to rα+1 are winners, and so by definition of ∆ all lenders of
∆ are winners.

If p = rα+1, then by Lemma 3.1, all lenders Li ∈ ∆ with
ri < rα+1 = p are winners. If a VCG winner is a loser, she
must bid her true interest rate by assumption, which must
then be greater than or equal to p since she loses the auction,
but also no greater than rα+1 since she belongs to ∆. Hence
all lenders of ∆ that are losers bid exactly rα+1. For any
winner Li 6∈ ∆, ri ≥ rα+1, but since Li gets a nonnegative
utility, ri ≤ rα+1, and so ri = rα+1. In other words, any
winner that does not belong to ∆ gets a zero utility, and so
can increase her bid to her true interest rate rα+1 without
changing her utility. This gives a Nash equilibrium with the
same price, and by the tie-breaking rule, the winners are
exactly the lenders of ∆.

A.5 Proof of Theorem 3.4
Proof. We first prove that b is a Nash equilibrium with

price rβ . Let Lk be the last winner and p be the price of
b, respectively. By the definition of β and selection of Lj ,
we know that p ≥ rβ . If p > rβ , by the construction of
b, all lenders in ∆ ∪ {Lβ} are winners. Since Lβ /∈ ∆, we
know that Lk ∈ ∆ and Lk does not exhaust her budget,
which implies that bk = p > rβ , which is impossible. Hence
p = rβ .

It is easy to see that no winner in b can obtain more
utility by increasing her bid (this is because, for any winner
Li, if moving her bid to a value higher than p = rβ , she will
not get any allocation). Additionally, all winners with either



bid 0 or true interest p = rβ and all losers do not have an
incentive to decrease their bid. The only lender we need to
consider is Lj . If j 6= k, Lj exhausts her budget in b, and
thus has no incentive to reduce her bid. If j = k, as Lj = Lk
does not exhaust her budget, then when reducing her bid,
the price will be decreased as well. Hence, Lj is not willing
to reduce her bid. Therefore, b is a Nash equilibrium.

From Lemma 3.2, we know that the price in any Nash
equilibrium lies between rα+1 and rβ . Therefore this must
be the worst Nash equilibrium.

A.6 Proof of Lemma 3.5
Proof. It is easy to see that both b and b′ have the

same allocation and price to winners, which is at least bk.
By Lemma 3.1, we know that for any Li, i = k + 1, . . . , n,
ri ≥ bk.

If Lk does not exhausts her budget, as all losers and
the last winner Lk bid the same value in b and b′, it is
easy to see that no lender has an incentive to increase her
bid in b′ to obtain more utility. In addition, by the fact
that b is a Nash equilibrium, it can be seen that lenders
L1, . . . , Lk−1, Lk+1, . . . , Ln cannot obtain more utility by de-
creasing her bid. For Lk, if Lk can obtain more utility by
decreasing her bid in b′, she is willing to decrease her bid in
b as well, a contradiction. Therefore, b′ is a Nash equilib-
rium with the same allocation and price as b.

The case where Lk exhausts her budget is similar. Hence,
the claim follows.

A.7 Proof of Lemma 3.6
Proof. For simplicity, in the proof, we denote b(j, bj) by

b(bj) and T (j, bj) by T (bj).
(a) Consider any Li ∈ T (bj). Note that the only differ-

ence between r and b(bj) is that Lj increases her bid from
rj to bj . Hence, the utility of all other lenders does not
decrease, which implies that ui(r) ≤ ui(b(bj)). Further-
more, by the definition of T and T (j), Li is weakly willing
to increased her bid in b(bj), which implies she is weakly
willing to increase her bid in r as well. Hence, Li ∈ T and
T (bj) ⊆ T .

(b) Assume otherwise that there is Li ∈ T with bi ≤ bj
such that Li ∈ T (bj). Further, by the definition of Vi(r) and
b(bj), Lj is the last winner in b(bj) and her budget is not
exhausted. Hence, Li exhausts her budget with price bj in
b(bj). In b(bi), however, Li does not exhausts her budget
with price bi. As bj ≥ bi > ri, we have ui(b(bj)) > ui(b(bi)).
Therefore, if Li ∈ T (bj), i.e. Li is weakly willing to increase
her bid in b(bj), the utility of Li can be strictly increased
in b(bi), which contradicts the definition of bi — the point
where the utility of Li is maximized.

(c) As Li ∈ T (bj), by Fact (a), we know that Li ∈ T .
If there is b ∈ Vi(r) such that b ≤ bj , by picking bi = b for
Li, we know that Li /∈ T (bj) by Fact (b), a contradiction.
Hence, in r and b(bj), Li is weakly willing to increase her
bid to the same points. (Note that when Li bids a value
higher than bj , it does not matter if Lj bids rj or bj .)

A.8 Proof of Corollary 3.1
Proof. For convergence, note that for any sequence of

moves, the price keeps increasing; so in at most n steps,
no lender is willing to increase her bid. At convergence,
no lender wants to increase her bid. Further, as all losers

bid their true interest, no lender can obtain more utility by
decreasing her bid. Hence, it converges to a Nash equilib-
rium.

A.9 Proof of Theorem 3.5
Proof. For the simplicity of the proof, we denote

b(f(j), vj) by b(j).
Let b∗ = (b∗1, . . . , b

∗
n) be a cheapest Nash equilibrium

with last winner Lk. If Lk exhausts her budget in b∗,
by Lemma 3.5, we know that r is a cheapest Nash equi-
librium as well. If Lk does not exhausts her budget, again
by Lemma 3.5, it is safe to assume that all other lenders bid
their true interest in b∗. As the utility of Lk is maximized
by bidding b∗k, we know that Lk ∈ T and b∗k ∈ Vk(r) ⊆ V
(otherwise, r is a Nash equilibrium). Hence, any profile
b(j), where vj < b∗k, is not a Nash equilibrium. Consider
the profile b(j), where vj = b∗k. By Lemma 3.6, we know
that b(j) is a Nash equilibrium, which is the cheapest Nash
equilibrium as well.

Similarly, we can prove that b(f(m), vm) is a worst Nash
equilibrium.

B. PROOFS IN SECTION 5

B.1 Proof of Lemma 5.1
Proof. In any Nash equilibrium (b1, . . . , bk, bk+1, . . . , bn)

of BLW, any lender Lj with rj < p = bk must be a winner.
Indeed, if not, Lj can bid p− ε ≥ rj and get positive utility.
So all lenders whose private interest rate is less than p must
be winners, and ri ≥ p for all losers Li. By assumption,
losers bid greater or equal to their true value, so bi ≥ ri ≥ p
as well.

As in Lemma 3.4 winners Li, i < k can replace their bid
by 0 and no one has an incentive to deviate. Suppose a
loser Lj decreases her bid from bj to rj ≤ bj , no winner
can profit from increasing her bid because the same increase
would have profited her in the previous profile as well.

B.2 Proof of Theorem 5.1
Proof. Note that both mechanisms are identical when

the last winner does not exhaust her budget. Let’s consider
an equilibrium b = (b1, . . . , bn) of BLW where Lk is the last
winner. By Lemma 5.1, we can assume without loss of gen-
erality that all lenders other than Lk bids her true interest
rate.

Suppose otherwise that b is not an equilibrium in
PROSPER. This means there is a profitable deviation for some
lender Li in PROSPER. There are the following cases.

Case 1. Li is a winner, i 6= k. Her only possible profitable
deviation is to increase her bid above bk. Since b is an
equilibrium in BLW, bk = rk+1, and therefore, by increasing
her bid, at least one loser becomes a winner and Li does not
exhaust her budget anymore. In that case PROSPER and BLW

compute the exact same allocation and price, which means
that if Li profits from that deviation in PROSPER, she would
profit from the same deviation in BLW, which contradicts the
fact that b is a Nash equilibrium in BLW.

Case 2. Li = Lk. As she does not wish to deviate in BLW,
bk = rk+1. In PROSPER, Lk cannot profit from decreasing her
bid, since if she is exhausting her budget, her allocation and
price remain the same. If she is not exhausting her budget,



decreasing her bid can only decrease her price. In all cases,
Lk cannot profit by decreasing. By an identical argument
as the above case, she cannot profit by increasing her bid in
PROSPER as well.

Case 3. Li is a loser. We show that if there is a profitable
deviation in PROSPER, there must be one in BLW as well. In-
creasing her bid does not increase her allocation (which is
0), and therefore does not increase her utility. Decreasing
her bid leads to a price that is less than her true value, which
decreases utility (since losers bid at least their true interest
rate).

Therefore any Nash equilibrium in BLW is also a Nash equi-
librium in PROSPER. When losers bid their true value, by
Lemma 3.4, we can restrict ourselves to the Nash equilib-
ria of PROSPER of the form (0, . . . , 0, bk, rk+1, . . . , rn), and
the same reasoning as above can be used to show the con-
verse.

C. PROOFS IN SECTION 6

C.1 Proof of Theorem 6.1
Proof. We start by showing that the final price p is no

less than rα. Assume by contradiction that p < rα. Then,
as lenders never bid below their own interest rate, all win-
ning lenders have an interest rate less than rα, hence belong
to the set {L1, . . . , Lα−1}. However, since

∑α−1
i=1 ai < D,

the borrower’s demand is not fulfilled by the winners of the
auction, which is impossible as the total budget of lenders
exceeds the demand. Hence p ≥ rα.

We now show that p ≤ rβ . Assume by contraction that
p > rβ . Then, all lenders with a true interest no greater than
rβ win the auction. Since the total budget of those lenders
is greater than D, at least one lender has a budget that is
not exhausted. The Prosper mechanism allows exactly one
winner to have a non-exhausted budget, let Lj be this lender.
Then L1, . . . , Lj−1, Lj+1, . . . , Lβ are all winners and exhaust
their entire budget. Note that Lj ∈ ∆ since the budget of
those lenders is at least D. We remarked in § 3 that β is
the largest index of a VCG winner when the set of lenders is
{L1, . . . , Li−1, Li+1, . . . , Ln} for any Li. Therefore the total
budget of the winners who completely exhaust their budget,
L1, . . . , Lj−1, Lj+1, . . . , Lβ , is at least D. This contradicts
the fact that Lj is allocated a positive amount. Hence p ≤
rβ .

C.2 Proof of Theorem 6.2
Proof. Let p be the final price. By the above lemma, we

know that p ≥ rα.
All lenders in ∆ are winners of PROSPER DYNAMICS. If there

is Li /∈ ∆ such that x
(T )
i > 0, then p ≥ rα+1 and there is

Lj ∈ ∆ who does not exhaust her budget. This is, how-
ever, impossible as myopic greedy behavior would lead Lj
to decrease her bid whenever receiving a partial allocation.
Therefore the set of winners in PROSPER DYNAMICS with my-
opic greedy lenders is ∆.

For the same reason, no VCG winner whose budget is not
exhausted should have a final bid higher than rα. Hence,
if the total budget of VCG winners exceeds D, the final
price is rα. If all VCG winners exhaust their budget, i.e.∑
Li∈∆ ai = D, then for any price above rα+1, lender Lα+1

can bid just below the price and get a positive allocation,
therefore the final bid of lender Lα+1 is rα+1. Since no lender

bid below their own interest rate, rα+1 is the lowest losing
bid and is the final price.

C.3 Proof of Theorem 6.3
Proof. Let Lj ∈ ∆ be the lender in ∆ whose VCG pay-

ment is affected by Lβ . We remark that Lj must be a winner,
since all VCG winners belong to the set of winners in the
dynamic process. If the final price p < rβ − ε, then there
is a previous round where Lj bids rβ − ε. We show that,
when that is the case, Lj always get a positive allocation, so
that Lj is not willing to lower her bid, which contradicts to
p < rβ−ε. Indeed, when Lj bids rβ−ε, lenders who bids less
than or equal to Lj belong to Sj = {L1, . . . , Lβ−1}\{Lj}.
Since β is the index of the largest VCG winner when con-
sidering the set of lenders {L1, . . . , Lj−1, Lj+1, . . . , Ln}, the
total budget of the lenders of Sj is less than D. This implies
that Lj must receive a positive allocation for that round.


