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Abstract

Incentives are more likely to elicit desired outcomes when they are designed based on accurate mod-
els of agents’ strategic behavior. A growing literature, however, suggests that people do not quite behave
like standard economic agents in a variety of environments, both online and offline. What consequences
might such differences have for the optimal design of mechanisms in these environments? In this paper,
we explore this question in the context of optimal contest design for simple agents—agents who strate-
gically reason about whether or not to participate in a system, but not about the input they provide to
it. Specifically, consider a contest where n potential contestants with types (qi, ci) each choose between
participating and producing a submission of quality qi at cost ci, versus not participating at all, to max-
imize their utilities. How should a principal distribute a total prize V amongst the n ranks to maximize
some increasing function of the qualities of elicited submissions in a contest with such simple agents?

We first solve the optimal contest design problem for settings where agents have homogenous par-
ticipation costs ci = c. Here, the contest that maximizes every increasing function of the elicited
contributions is always a simple contest, awarding equal prizes of V/j∗ each to the top j∗ = V/c −
Θ(
√
V/(c ln(V/c))) contestants. This is in contrast with the optimal contest structure in compara-

ble models with strategic effort choices, where the optimal contest is either a winner-take-all contest
or awards possibly unequal prizes, depending on the curvature of agents’ effort cost functions. We
next address the general case with heterogenous costs where agents’ types (qi, ci) are inherently two-
dimensional, significantly complicating equilibrium analysis. With heterogenous costs, the optimal con-
test depends on the objective being maximized: our main result here is that the winner-take-all contest is
a 3-approximation of the optimal contest when the principal’s objective is to maximize the quality of the
best elicited contribution. The proof of this result hinges around a ‘sub-equilibrium’ lemma establish-
ing a stochastic dominance relation between the distribution of qualities elicited in an equilibrium and
a sub-equilibrium—a strategy profile that is a best response for all agents who choose to participate in
that strategy profile; this relation between equilibria and sub-equilibria may be of more general interest.

1 Introduction

A vast range of online systems—social computing and crowdsourcing platforms, matching markets, ranking
and recommendation systems—involve agents who make choices that determine the input to, and therefore
the outcome of, the system. This poses an immediate problem of designing incentives and environments
that drive choices resulting in desirable outcomes, and has resulted in a rich literature on mechanism design
and algorithmic game theory for these settings.

Economic design is more likely to be effective when it is based on accurate models of the agent popu-
lation at which it is targeted. A growing literature, however, suggests that people do not quite behave like
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standard economic agents in a variety of settings, both online and offline. What consequences might such
differences in behavior have for the optimal design of these environments?

In this paper, we explore this question of ‘behavioral’ mechanism design in the context of designing
optimal contests for simple agents—agents who strategically reason about whether or not to participate in a
system, but not about the input they provide to it—to see how this difference in agent behavior affects the
analysis of the strategic environment and the structure of optimal mechanisms.

Before proceeding, we note that our use of the term ‘behavioral’ differs slightly from that in the be-
havioral economics literature, and specifically is not meant to require that our agents are irrational in any
sense or have bounded reasoning abilities: indeed, the simple agents in our model do not make subopti-
mal choices—they do make optimal choices, but over restricted choice sets relative to the standard models
in the contest design literature. We use the term behavioral only to indicate (mechanism design problems
with) models of agents that more accurately capture real human behavior in the environment of interest than
standard economic models.

1.1 Contest design

Contests, where participants expend some resource—time, effort, money— to compete for prizes, are every-
where. There are athletic and artistic competitions and competitions for mathematics and research develop-
ment and design; online, too, there an exploding number of contests—both explicit, like online photography
contests and design contests on platforms like Quirky and 99designs1, as well as implicit contests for at-
tention or virtual rewards2 on user-contribution based websites. The ubiquitousness of contests, as well as
the seminal work of Lazear and Rosen [19] showing that contests can serve as an efficient incentive scheme
for effort elicitation, has led to a huge literature on contest design, studying how to allocate rewards to best
incentivize high-quality submissions from utility-maximizing contestants with a cost to effort.

There is a wide spectrum of contests, however, where participants do not quite strategize over the quality
of their submissions:

• First, there are contests where the production of an entry is essentially costless, and the only cost
incurred is that of submission—for instance, potential contestants may already possess eligible entries
prior to, or independent of, their knowledge of the contest, and decide only whether or not to the incur
the cost (either effort or monetary) of submission, as in arts or literature contests3.

• Second, there are environments where producing an entry indeed incurs a cost, but this cost essentially
does not vary with the quality of the entry—for example, contributing an answer on expertise-based4

online Q&A forums incurs a cost5 which is essentially independent of the contribution’s quality.

• Finally, there are ‘best-effort’ environments where producing an entry does incur a cost, and incurring
a higher effort cost does increase the quality of the resulting submission, but where contestants do

1www.quirky.com; www.99designs.com
2Most user-generated content sites rank users contributions according to some measure of quality, and a contributions ranking

determines its likely viewership and therefore the attention reward to the corresponding user. A number of websites also give out
more explicit virtual rewards to encourage contribution, such as virtual points (e.g. Y! Answers), badges (StackOverflow, Quora,
TripAdvisor) or leaderboard rankings (Amazon, Y! Answers).

3As one example, a number of travel photography contests are frequently hosted by both government agencies and private
enterprises such as National Geographic—participants in these contests likely do not undertake their travel to produce a photo for
such a contest, but rather choose whether to submit an eligible photo or not.

4(i.e., where the quality or value of an answer depends much more on the expertise of the answerer than her effort, such as health
or law forums)

5(the cost of logging in and posting the answer on the forum)
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not ‘game’ their effort—having made the decision to participate, a contestant will work to the best
of her ability to produce the best entry she possibly can. Any contest-like scenario where entry is
driven by intrinsic motivation for the task at hand can fall into this category. This category includes
offline contests for, say, a performing art. It also includes online contests like Quirky, as well as
citizen-science and user-contributed content driven communities. Indeed, there is a growing literature
suggesting that users in several online contribution settings do not strategize on effort on a task in
response to incentives, although they might choose whether or not to undertake the task based on
the promised rewards [17]6; for instance, [16] find in a field experiment on Google Answers that
participation, but not quality, is sensitive to the prize offered to winning answers.

There are clearly a vast range of real-life scenarios, therefore, where potential contestants do strategize
about whether or not to participate in a contest, but not about the quality of their submissions. How do
incentives and equilibrium outcomes change when agents only make strategic participation choices, rather
than strategic effort choices, to maximize their expected utilities? Specifically, what allocation of prizes for
each rank leads to the ‘best’ elicited set of submissions in equilibrium?

1.2 Our contributions

We explore the idea of ‘behavioral’ mechanism design via the problem of designing optimal contests for
simple agents, where a principal seeks to allocate a total prize to optimize the qualities of elicited submis-
sions when potential contestants only strategize about whether to participate in the contest. Specifically,
consider a population of n potential contestants with types (qi, ci) drawn from a known joint distribution
F (q, c), where an agent with type (qi, ci) produces output of quality qi at a cost ci if she participates in the
contest. Suppose there is a principal who can distribute a total prize V amongst agents based on their relative
ranks; here V might be either a monetary prize budget, or a non-monetary resource such as display space on
a webpage that translates to attention rewards. Each agent decides whether or not to participate by compar-
ing her expected prize from participating (which depends on the rank of her submission’s quality qi relative
to that of the other agents who also choose to enter) against her cost of participation ci. What allocation of
V amongst the n ranks induces equilibrium participation decisions that lead to the best outcomes?

Participation-only strategic choices can be thought of as a special case of a strategic effort choice model,
where agents are restricted to a binary choice between the maximum possible effort and zero effort. While
it might seem, at first glance, that reducing agents’ choices from an interval to the endpoints of that in-
terval ought not change the nature of the optimal contest design problem much, or at least only make it
simpler, this turns out to be far from the truth—agents’ incentives are significantly altered by the fact that
any competitor who does choose to participate will produce her ‘best possible output’ instead of ‘adjust-
ing’ her effort (and correspondingly the submission quality that all other participants must compete against)
to some suitable point in the interior of the interval. We note here an interesting conceptual parallel with
discrete versus continuous optimization: moving from continuous to discrete optimization problems where
variables can only take binary (or integer) values fundamentally changes the nature of the algorithm design
question, leading to an entirely different body of techniques for algorithm design and, in many cases, to
computationally intractable problems. A second factor that contributes to the complexity of the strategic
problem in these settings is that agents can, in general, have two-dimensional types: as discussed below, this

6Kraut and Resnick [17] summarize this as a ‘design claim’: “With task-contingent rewards for small, discrete tasks, larger
rewards will motivate people to take on tasks, but will not motivate higher effort on accepted tasks.”

3



significantly complicates the nature of equilibria, necessitating new tools to bound the outcomes elicited in
an equilibrium of a contest.

We first study the optimal contest design problem in settings with homogenous participation costs c, so
that agents’ types (qi, c) are essentially one-dimensional: here, the contest that elicits the highest equilibrium
participation is optimal for any objective that is an increasing set function of the elicited submission quali-
ties. We show that this optimal contest is always a simple contest which awards equal prizes of V/j∗ each to
the top j∗ contestants, where the optimal number of prizes j∗ scales with ν = V/c as ν −Θ(

√
ν/ log(ν)).

This contrasts with the optimal contest structure in comparable models with strategic effort choices, where
the optimal contest is either a winner-take-all contest or may award unequal prizes, depending on the cur-
vature of agents’ effort cost functions [21]. This means, for example, that in online user-generated content
environments where users do decide whether or not to contribute, but do not strategize over the qualities
of the content they produce, handing out an appropriately chosen number of identical badges might lead
to better outcomes than reward structures—such as ranked top-contributor lists—inducing unequal social-
psychological rewards. As another example, a suitably chosen number of equal ‘merit’ prizes in a travel
photography contest might elicit superior submissions than a structure that awards unequal first, second, and
third prizes7.

We next address the general case when agents have heterogenous costs ci that can be arbitrarily corre-
lated with the qualities qi of their submissions. Here, agents’ types (qi, ci) are inherently two-dimensional,
unlike in the homogenous cost model in §3, or in strategic effort models in the contest design literature
(where agents’ types are parametrized by a one-dimensional ability that either scales agents’ cost func-
tions or their outputs per unit effort). With two-dimensional types, much of the structure that is central to
the equilibrium analysis of contests with one-dimensional agent types—where equilibrium action choices
are typically monotone in this type—vanishes, making it difficult to explicitly characterize equilibria, and
therefore to identify the contest structure that yields the ‘best’ equilibrium outcome.

Since the design of the optimal contest can, in general, vary depending on the choice of objective func-
tion in this setting, we focus on contests that maximize the quality of the best elicited submission in equi-
librium. Our main result in this model concerns the winner-take-all contest, which awards the entire prize
V to the top entry. A winner-take-all contest does not necessarily optimize the expected quality of the best
elicited submission, as shown, for example, by our analysis of the case of homogeneous participation costs:
we show, however, that the winner-take-all contest always achieves a bounded approximation factor 8 with
respect to the optimal contest. More precisely, the expected value of the highest-quality entry elicited in any
pure-strategy equilibrium of the winner-take-all contest is no smaller than one-third of the expected maxi-
mum quality elicited in the best equilibrium of an optimal contestM∗. One interpretation of this result is
that the designer’s problem has an approximately detail-free solution: without knowing the joint distribution
of (qi, ci), the designer can run a winner-take-all contest and thereby guarantee, in equilibrium, an outcome
not much worse than the best equilibrium achievable by any contest. The proof of this result hinges around

7For example, the National Geographic 2014 contest awards 3 unequal top prizes and 7 identical merit prizes:
http://travel.nationalgeographic.com/travel/traveler-magazine/photo-contest/2014/.

8One could question whether such approximation results are meaningful, since it is unclear what it even means to quantify the
quality of elicited submissions numerically. Our approximation result is at least partly immune from this critique for the following
reason. First note that the critique applies only to the way we evaluate the quality of a mechanism’s outcome in equilibrium, not to
the way we model mechanisms, agents, and equilibria. This is because the mechanisms we consider are rank-order contests which
make only ordinal comparisons of quality, so the behavior of a mechanism and its set of equilibria are unaffected by monotonic
reparameterizations of the quality scale. For essentially the same reason, our approximation result about the winner-take-all contest
remains valid under any monotonic reparameterization of quality; the reparameterization does not affect the set of equilibria of the
contest, so the conclusion of any theorem about that set of equilibria cannot be sensitive to whether we have reparameterized the
quality scale.
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a ‘sub-equilibrium’ lemma, which establishes a stochastic dominance relation between the distribution of
qualities elicited in an equilibrium and in a sub-equilibrium—a strategy profile that is a best response for all
agents who choose to participate, but not necessarily a best response for non-participants—of the winner-
take-all contest, and may have broader applications to characterizing equilibrium performance in settings
where it is difficult to explicitly solve for equilibria.

1.3 Related work

There is now a tremendously large literature on the economics of contests. The seminal work of Lazear
and Rosen [19] suggesting that contests, or rank-order tournaments, can serve as an efficient scheme to
incentivize effort from strategic agents has given rise to a vast literature on contests as a means for effort
elicitation, see e.g. [13, 5]. The problem of optimal contest design—how to allocate rewards to elicit the most
desirable outcomes, posed by Sir Francis Galton back in 1902 and formally addressed as early as [11]—has
been studied in a vast variety of settings, encompassing heterogeneous (e.g. [21, 22, 4]) and homogenous
(e.g. [26, 10]) agent populations, risk-neutral and risk-averse preferences over prizes, non-monetary re-
wards [23, 10], as well as various models of information and observability of output, and various objectives
and constraints faced by the principal running the contest.

While very large, this literature—to the best of our knowledge—studies contests where agents make
strategic effort choices that (deterministically or stochastically) affect the quality of their submissions, and
does not address the problem of optimally designing contests for agents who make only strategic participa-
tion choices, a difference that significantly alters the nature of agents’ incentives as discussed in §1. The
model closest to ours from this literature is perhaps that of Taylor [26], where agents can make a random
draw of output quality from a distribution F at a cost of c, similar to our model in §3. However, agents re-
peatedly make this choice over T periods (the duration of the contest), so that the central incentive problem
faced by an agent in [26] is whether to make an additional draw at this cost. This repetition of the draw
essentially mimicks a strategic choice of effort, albeit under different informational circumstances than in
most other economic models of contests.

There is also a growing literature on modeling and analyzing incentives in online competitive environ-
ments such as crowdsourcing contests and online user-contributed content (see, e.g., [6, 1, 4, 8, 10, 3, 7, 15]).
As in the contest design literature, almost all of this work models agents as making non-binary strategic ef-
fort (or quality) choices, and asks how to design incentives to elicit desired effort profiles from contestants.
We note here that Cavallo and Jain [3] find—albeit in a completely different model from ours—that for
specific distributions of agent abilities that satisfy a certain condition, the efficient, i.e., first-best outcome
(accounting for both the principal’s value and agents’ costs to effort), would be for some number of agents to
exert maximum effort and for the remaining agents to exert no effort; Cavallo and Jain [3] then address the
question of implementing the efficient outcome in equilibrium, i.e., when agents strategically choose effort
in response to the contest design, and prove both existence and impossibility results. While these ‘all or
nothing’ effort choices bear an interesting resemblance to our model with agents who strategize only about
participation, this resemblance is only superficial: the all-or-nothing choice in our model is an assumption
about agents’ strategic behavior, while it arises as a structural property of efficient outcomes under certain
conditions in [3].

The most closely related work to ours from this literature is [8] which investigates the implementability
of optimal outcomes in widely used ‘best-contribution’ contests, in a model where agents with randomly
drawn heterogenous abilities make participation-only choices incurring a uniform cost. While that model
corresponds precisely to the model in §3 of this paper, the nature of the questions addressed are funda-
mentally different—Ghosh and Hummel [8] analyze the implementability of optimal outcomes in a specific
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contest structure without resource constraints; in contrast, we ask how to design the optimal contest under a
given resource constraint, and identify which amongst several possible contest structures achieves the best
outcome subject to this resource constraint.

We note that the model of simple agents who strategically reason only about participation choices is not
new to this paper—in addition to [8], it appears at least in [9] in the context of privacy-sensitive users who
make simple participation-only decisions about whether to share their data (although again in the context
of equilibrium analysis rather than of optimal design), as well as possibly in several other settings in the
vast economics literature. In the same spirit, we note that the general idea of moving from ideal to more
realistic models is also not new to this paper: in a broad sense, our work belongs to a line of previous
literature—albeit in completely different settings, with very different questions and models—that is driven
by differences between the idealized models in traditional economic analyses and ‘real’ environments. This
includes, for instance, the work on behavioral game theory [2], and building more realistic game-theoretic
models of agent behavior as in [27], as well as designing mechanisms for more realistic assumptions about
agents’ information or preferences, such as the literature on deliberative agents initiated in [18].

2 Model

We consider a model with n potential participants, each of whom strategically chooses only whether or
not to participate in a given rank-order contest M. An agent who decides to participate will produce
an output of quality qi, incurring a cost ci, where agents’ quality-cost pairs are drawn from a known
joint distribution F ; an agent makes her strategic participation choice based on whether her expected
benefit from participation is large enough to cover her cost. Naturally, each agent’s choice depends on the
participation choices of the remaining agents, since these determine the relative rank of her output qi and
therefore her prize. We will be interested in designing contestsM that maximize some increasing function
of the qualities of submissions from the agents who choose to participate in the contest in equilibrium. We
describe the model formally below.

Agents. There is a pool of n agents who are all potential participants in a contest. Agents are simple—they
only strategically choose whether or not to participate in the contest, but do not strategically adjust their
efforts, or equivalently the quality of their outputs, in response to the contest structure and environment. That
is, if an agent decides to participate, she puts in a predetermined amount of effort incurring a corresponding
cost, leading to some corresponding output quality; if her effort is too costly relative to her expected benefit
from the resulting quality of output, she will simply not participate.

We model the fact that agents might have different abilities or skills relevant to the task posed by the
contest via the quality of their output, as well as the cost they incur to produce this output—we denote the
quality of the output that agent i can produce, if she chooses to participate, by qi, and her associated cost by
ci. (An agent who does not participate produces no output, and incurs no cost.) An agent i is fully described
by her quality-cost pair (qi, ci); we assume that the tuples (qi, ci) for each of the n agents are i.i.d. samples
from a joint distribution F (q, c) which is common knowledge to all agents and the contest designer. We
additionally assume that the marginal distribution of qualities has no mass points: for every q0, the event
q = q0 has zero probability under F .

Contests. We suppose that the principal can observe the rank-ordering of the qualities qi of participants’
submissions, and correspondingly consider rank-order mechanisms that award prizes to agents based (only)
on the rank of their outputs. We useM(v1, . . . , vn) to denote the rank-order mechanism that awards a prize
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vj to the agent with the jth rank, when submissions are arranged in order of decreasing quality with ties
broken at random9. A mechanismM(v1, . . . , vn) is monotone if higher-ranked agents receive larger prizes,
i.e., if

v1 ≥ v2 ≥ · · · ≥ vn,

and monotone nonnegative if, in addition, vn ≥ 0. We will use the term contest to mean a monotone
nonnegative rank-order mechanism henceforth in the paper.

Utility, strategies, and equilibrium. Agents are risk-neutral with quasi-linear utilities: an agent’s utility,
if she chooses to participate in a contestM(v1, . . . , vn), is the difference between her expected prize (de-
termined by her rank, which depends on how her quality qi ranks relative to the random draws qi′ of the
remaining agents who choose to participate) and her cost ci to produce the output qi. An agent who does
not participate receives no prize and incurs no cost, and so obtains utility 0.

A strategy prescribes whether or not an agent with a given quality-cost draw should participate in a con-
test. Formally, a (pure) strategy π is a function mapping a quality-cost tuple (q, c) to a binary participation
decision specifying whether or not to participate in a mechanismM; a player (qi, ci) following strategy π
participates inM if and only if π(qi, ci) = 1. A pure strategy profile (π1, . . . , πn) is a vector of strategies,
one for each of the n players; a symmetric pure strategy profile is one where πi = π for all i ∈ [n] and is
denoted ~π. Finally, a pure strategy profile in which πi′ = π for all i′ 6= i, but πi may differ from π, will be
denoted by (πi, ~π−i).

Agents make their strategic participation choices based on the mechanism M(v1, . . . , vn) announced
by the principal, the strategies ~π−i of other agents, and their knowledge of the distribution F of quality-
cost tuples (q, c) and the number of agents n. An agent i with quality and cost (qi, ci) decides whether to
participate or not by comparing her expected utility from producing output qi at cost ci against the utility
of 0 from non-participation; we assume that an agent who is indifferent between participation and non-
participation always breaks ties in favor of participation10.

A symmetric pure-strategy profile ~π constitutes a Bayes-Nash equilibrium if no agent can profitably
deviate from the recommendation of the strategy π given her draw (qi, ci); that is, (i) an agent with
π(qi, ci) = 1, i.e., who participates when playing according to π, obtains non-negative expected utility
assuming that the remaining n − 1 agents with (q, c) drawn from F also play according to π, and (ii) the
expected utility of an agent with π(qi, ci) = 0, if she were to participate while the remaining n − 1 agents
play according to π, is negative. That is, no participant can beneficially deviate by not participating, and no
non-participant would wish to participate.

For a given symmetric strategy profile ~π, the set of participants inM is a random variable constructed
by choosing n i.i.d. draws of (qi, ci) from F , and then applying π to each of these (qi, ci) tuples. We use
S(π) to denote the random set of participants when all n− 1 agents follow the strategy profile π. Note that
S depends only on the strategy profile chosen by agents, and does not depend at all on the mechanismM.

Objective and constraints. We will be interested in the design of optimal contests, i.e., an allocation of
rewards (v1, . . . , vn) that maximizes some function of the qualities of submissions from the agents who

9Note that our assumption that the marginal distribution of q has no point masses implies that almost surely, the tie-breaking
rule need not be invoked.

10In this paper, we always adopt assumptions on the joint distribution of (qi, ci) (such as no point masses) that are sufficient
to ensure that agents only employ this tie-breaking rule with probability 0, so that this assumption does not affect our qualitative
conclusions, but only makes our results easier to state.
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choose to participate in a symmetric equilibrium11 of the contest, subject to some constraint on the available
rewards vj . (Note that these rewards vj may be either monetary, or non-monetary social-psychological
rewards; see §1.) While there are various possible constraints on the rewards12, we will focus in this paper
on a sum constraint:

∑n
j=1 vi ≤ V. We assume throughout that the rewards, or prizes, vj for each rank j are

announced prior to the contest. Note this means that there might be leftover prize money for any particular
instantiation of the agents’ (qi, ci) pairs and strategic choices: depending on how many agents actually
participate, the total sum of rewards given out to participating agents might be strictly less than V . That
is, we consider rank-order mechanisms where the principal commits to a single allocation of V amongst
the n ranks a priori, and cannot redistribute V (or equivalently, any leftover prize money) depending on the
participation actually elicited, in contrast to hypothetical mechanisms where the principal might announce a
full menu of prizes ((v11), (v21, v

2
2), . . . , (vn1 , . . . , v

n
n)) for each possible level of participation k = 1, . . . , n.

The outcome of a contest is determined by the output qualities qi of agents who choose to participate in
the contest. Let q(π) ∈ Rn denote the (random) vector consisting of the ordered output qualities of agents
who participate when all agents play according to the strategy profile π. Formally, define an agent i’s output
under π to be qi if i participates (i.e., π(qi, ci) = 1) and 0 if she does not (π(qi, ci) = 0); the (random) vector
q(π) then holds the kth largest of these n outputs qi · π(qi, ci) in its kth component.

The principal seeks to design mechanisms that maximize the expected value of some objective function
f of the output qualities elicited in equilibrium. We define an optimal contest for a given objective f to
be any mechanismM(v1, . . . , vn) such thatM has a symmetric pure-strategy equilibrium that maximizes
E[f(q(π∗(M)))]13 over all symmetric pure-strategy equilibria π∗(M) of all feasible contestsM. Note that
it is not clear, a priori, that there exists any mechanism with a symmetric pure-strategy equilibrium, nor that
a given mechanism necessarily has such an equilibrium or that the equilibrium is unique when it exists. In
Sections 3 and 4, we will prove existence and uniqueness of symmetric equilibria under the mild hypotheses
that the distribution of qi (in §3) and the joint distribution of (qi, ci) (in §4) are absolutely continuous with
respect to Lebesgue measure, i.e., they assign probability zero to every measure-zero set.

Throughout, we will be interested in objective functions that are increasing functions of the qualities of
the elicited outputs: a function f is increasing if f(q1) ≥ f(q2) whenever the vector q1 � q2. Informally, a
function f of the set of elicited output qualities is increasing if higher-quality outputs are (weakly) preferred
to lower-quality ones, and increasing participation to a superset of existing participants also makes the
principal happier. We note that this assumption—that ‘more is better’, or equivalently, free disposal of
output—is not entirely without loss of generality: it does not capture, for instance, search costs associated
with sorting or finding better outputs in a larger set of outputs, or equivalently says that such costs are zero
or negligible compared to the benefit of having a larger set of outputs. Nonetheless, the assumption of an
increasing objective is reasonable in a vast number of settings, and essentially all the objective functions used
in the (now vast) literature on contest design, including the two most commonly used objectives, namely the
maximum output maxi∈S qi and the sum of outputs

∑
i∈S qi, are such increasing functions.

11All contests that we consider in this paper have a symmetric equilibrium which is unique, and we restrict our attention to
symmetric equilibria.

12For instance, if the vi are attention rewards associated with content being displayed down a webpage, a natural constraint is a
maximum per-slot attention constraint of the form vj ≤ Vj [10].

13As before, the expectation is over random draws of (qi, ci) from F .
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3 Homogenous participation costs

We begin by considering a special case of the distribution F (q, c) where all agents have homogenous costs
of participation, i.e., ci = c for all i. A number of competitive environments can be reasonably described by
a model with such homogenous participation costs—any contest where the participation cost ci is primarily
the cost of submission (either monetary, such as an entry fee, or the effort cost) rather than production (§1),
or where the cost of producing an entry is largely independent of its quality (as in online content contribution
settings where users differ in their abilities to contribute but incur similar contribution costs irrespective of
quality, or in time-bound contests where the perceived cost is the time cost of participating in the contest),
are well captured by a model with homogenous costs ci = c.

We first analyze symmetric equilibria14 of contests when agents have homogenous costs in §3.1, and
show that the equilibrium in any contest always consists of a threshold strategy. This means that the optimal
contest for any increasing objective function of the designer is identical, and corresponds to a contest with
the lowest threshold. We use this equilibrium analysis and an LP formulation of the contest design problem
to prove our main result (§3.3), which is that optimal contests are simple: an optimal contest awards an
equal prize to some number j∗ of the highest-ranked contestants, and no prize to the rest. (Note that this
structure is in contrast with the optimal contest structure in comparable models with strategic effort choices,
where the optimal contest is either a winner-take-all contest or may award unequal prizes, depending on
the curvature of agents’ effort cost functions [21].) The implications of this result for contest structures in
various practical competitive environments are discussed in §115. Finally, we investigate how the optimal
number of prizes j∗, as well as the expected participation, vary with the ‘scale’ V/c of the contest in §3.4.

Throughout this section, we will use F (q) to denote the marginal distribution from which agents’ qual-
ities qi are drawn. We will also assume that V

n < c, i.e., there is not enough prize money to incentivize
all agents to participate, since otherwise the optimal contest design problem is trivial: the contest with
vj = V

n ≥ c achieves full participation, since all agents receive a prize that covers or exceeds their cost to
participation.

3.1 Equilibrium analysis

We first analyze equilibrium behavior in a general contest M(v1, . . . , vn) with simple agents who have
homogenous costs. We show that with homogenous costs, the equilibria for any contest are threshold-
strategy equilibria, where all agents with qualities qi above some threshold participate, and the remaining
agents do not. Before proving the result, we first introduce the function cM(p) defined by

cM(p) =
n∑
j=1

vj

(
n− 1

j − 1

)
pj−1(1− p)n−j . (1)

This function will turn out to be central to our analysis. Its value denotes the expected prize earned by a
participant in the contestM(v1, . . . , vn) when each of the other n−1 agents has probability p of participat-
ing and placing ahead of that participant. Of course, the value of p depends on the type of that agent—her
output quality qi—as well as the strategies upon which each of the remaining n − 1 contestants base their
participation decisions, so that p = p(qi, π−i). When all agents play according to a common threshold
strategy, though, if an agent with quality qi participates then this probability of another agent participating

14Since we restrict attention to symmetric equilibria throughout this paper, we henceforth omit the modifier “symmetric” when
discussing equilibria.

15See “Our contributions”.
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and beating her is precisely p = 1− F (qi), since i participates only if her only quality meets or exceeds the
threshold.

The following lemma will be crucial to our analysis.

Lemma 3.1. For any monotone rank-order mechanismM = M(v1, . . . , vn), cM(p) is non-increasing in
p. If v1 6= vn, then cM(p) is strictly decreasing in p.

Proof. As stated above, cM(p) is equal to the expected prize gained by a contestant in contestM with n−1
other agents, when each of these agents (independently) places ahead of her with probability p. Intuitively,
as we increase p, this contestant’s (random) rank for larger values of p stochastically dominates the rank for
smaller values of p, and the lemma follows since prize is a decreasing function of rank.

More rigorously, for p0 < p1, consider an urn containing three types of balls: red balls with probability
p0, white balls with probability p1−p0, and blue balls with probability 1−p1. Consider a random experiment
in which n − 1 balls are sampled independently (with replacement) from the urn, and j0 is defined to be
the number of red balls sampled while j1 is defined to be the number of sampled balls that are either red or
white. From the formula for cM(p) one can see that cM(p0) is equal to the expected value of vj0+1 while
cM(p1) is equal to the expected value of vj1+1. Since j0 ≤ j1 pointwise and v1, . . . , vn is a non-increasing
sequence, it follows that cM(p0) ≤ cM(p1) as claimed. There is a positive probability that n−1 white balls
are drawn from the urn, and in the event that this happens j0 + 1 = 1 while j1 + 1 = n. Thus, assuming
v1 > vn we have cM(p0) < cM(p1) which confirms the second claim in the lemma.

The next proposition asserts that rank-order mechanisms have unique equilibria in threshold strategies.
The proof is deferred to Appendix A.

Proposition 3.1. For any monotone rank-order mechanismM, there is a symmetric equilibrium in threshold
strategies where every agent with quality qi ≥ q∗ participates, and every agent with quality qi < q∗ does
not participate; the equilibrium threshold q∗ satisfies cM(1 − F (q∗)) = c. This is the unique symmetric
equilibrium ofM.

3.2 Optimal contest design: LP formulation

The fact that there is a unique equilibrium in threshold strategies for every monotone rank-order mechanism
M =M(v1, . . . , vn) means that the (equilibrium) vector of outputs q1 in a mechanismM1 with threshold
q∗1 dominates the vector of outputs q2 in a mechanism M2 with threshold q∗2 > q∗1 , for every possible
realization of the qualities qi: every agent who participates in equilibrium in the second mechanism also
participates in the first, and there could possibly be additional agents who participate inM1 but not inM2.
This means that the problem of choosing the optimal mechanism for any objective f(q) which is increasing
in the vector of outputs q becomes very simple: we want to find the mechanism with the allocation of
rewards (v1, . . . , vn) that leads to the lowest equilibrium threshold q∗(M).

Consider any mechanismM(v1, . . . , vn), and let p = 1 − F (q∗) where q∗ is the equilibrium threshold
inM(v1, . . . , vn) (Proposition 3.1). Since all agents with qualities qi ≥ q∗ participate inM in equilibrium,
we can interpret p as the ex-ante probability (i.e., prior to observing the draw of qi) with which each
agent will participate in the mechanism. We want to distribute the total prize V into (v1, . . . , vn) so as
to maximize this participation probability p = 1 − F (q∗), since maximizing this participation probability
maximizes any increasing objective f of the principal running the contest.
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Feasibility. First, note that the problem of deciding whether or not a given participation rate p is feasible for
a given total prize V , and participation cost c, can be written as a feasibility LP in the variables (v1, . . . , vn):

v1 ≥ v2 ≥ . . . ≥ vn ≥ 0,∑n
j=1 vj ≤ V,∑n

j=1 vj
(
n−1
j−1
)
pj−1(1− p)n−j = c.

(2)

The first two constraints say that we restrict ourselves to monotone nonnegative mechanismsM that dis-
tribute a total prize of at most V . The third constraint is the incentive constraint; it accounts for the fact
that agents make strategic (albeit simple) choices in response to the incentives created by the mechanism
M(v1, . . . , vn), and ensures that p = 1− F (q∗) actually describes the equilibrium threshold inM.

If this LP is feasible, there exists an allocation of the total reward V into rewards (v1, . . . , vn) that elicit
an equilibrium participation probability of p; if not, no contest with total available prize V can achieve a
participation rate of p when agents have cost c to participation.

Optimality. The feasibility LP asks whether it is possible to achieve some level of participation p given a
total reward V , when agents have participation costs c. The question we would actually like to ask is what
is the highest participation rate we can achieve given the pair (V, c), and how—i.e., using what allocation
scheme (v1, . . . , vn)? Since the incentive constraint—the third constraint in (2)—is nonlinear in p, we
cannot write the problem of maximizing p over all allowable choices of (v1, . . . , vn) for given values of
c and V as an LP. However, the monotonicity between c and p established in Lemma 3.1 will allow us to
approach this question via an LP anyway.

Fix a mechanismM =M(v1, . . . , vn): for every p, the function cM(p) defined in (1) gives the precise
participation cost at whichM(v1, . . . , vn) has equilibrium participation rate p. Now for a given p, consider
the following LP in the variables (v1, . . . , vn):

maximize
∑n

j=1 vj
(
n−1
j−1
)
pj−1(1− p)n−j

s.t. v1 ≥ v2 ≥ . . . ≥ vn ≥ 0,∑n
j=1 vj = V.

(3)

Note that the objective of this LP is precisely cM(p). Therefore, for a given p ∈ [0, 1], the solution to this
optimization problem gives the largest participation cost c at which a participation rate of p can be supported
in equilibrium by optimizing over how the prize V is distributed across ranks.

Lemma 3.1, which asserts the monotonicity of cM(p), allows us to use this LP to address the question
of optimal contests, i.e., contests that achieve the best possible participation rate p for a given total prize
V and participation cost c, as follows. Define the function c∗(p) to be the optimal value of the LP (3) for
each p ∈ [0, 1]: c∗(p) = maxM(v1,...,vn) cM(p) describes the maximum participation cost c at which a
participation rate of p can still be supported in equilibrium by appropriately choosing the most favorable
reward allocation (v1, . . . , vn). From Lemma 3.1, the function c∗(p) is strictly decreasing, since it is the
pointwise maximum of strictly decreasing functions. (Our assumption that Vn < c implies that v1 6= vn for
any contest that elicits non-zero participation, since if v1 = vn, the prize vj ≤ V

n for all ranks j so that
no agent participates). Hence c∗(p) is also invertible; define the inverse of this function to be p∗(c). The
function p∗(c) is the highest participation rate that can be supported in equilibrium with a total prize V when
agents have participation cost c, and this rate is achieved by any contest that maximizes the objective in (3)
for p = p∗(c).

Note that the invertibility of c∗(p) is important not because we cannot answer the question of the
best achievable p∗ for a given (V, c) without it, but rather because it allows us to say that an allocation
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(v1, . . . , vn) achieving the optimum of (3) for any specified p is indeed an optimal contest (for the value of
c corresponding to the LP optimum). Without invertibility, we could still define p∗(c) as the largest p for
which c∗(p) was equal to c, to answer the question of the best achievable p for a given (V, c) pair. However,
studying the optimal solutions to the LP (3) would not necessarily give us any insights into the structure of
optimal contests, since we are interested in understanding what contest designsM(v1, . . . , vn) achieve the
best possible outcome p for given cost c, rather than the contests that have the lowest c for a given p.

3.3 Optimal contests are simple

We will now use the LP formulation (3) to derive the structure of optimal contests. Our main result is that
optimal contests are simple: for every value of total prize V and participation cost c, there is an optimal
contest which awards j equal prizes of value V/j each to some top j ranks, and a prize of 0 to all ranks
j + 1 and below. To prove this, we reformulate the LP (3) by changing variables. For j = 1, . . . , n, let
wj = j(vj − vj+1), where we define vn+1 = 0. The constraint on the total allocated prize can be written as

V =
n∑
j=1

vj = (v1 − v2) + 2(v2 − v3) + 3(v3 − v4) + . . .+ n(vn − vn+1) = w1 + . . .+ wn. (4)

The nonnegativity and monotonicity constraints on the prizes vj , that is, vj ≥ vj+1 for j = 1, . . . , n−1 and
vn ≥ 0, simply translate to wj ≥ 0 for j = 1, . . . , n. Finally, we rewrite the objective in terms of the wj :

n∑
j=1

vj
(
n−1
j−1
)
pj−1(1− p)n−j =

n∑
j=1

 n∑
k=j

wk
k

(n−1
j−1
)
pj−1(1− p)n−j

=
n∑
j=1

wj

(
1
j

j∑
k=1

(
n−1
k−1
)
pk−1(1− p)n−k

)
.

We can therefore rewrite the LP (3) in the variables (w1, . . . , wn) as follows:

maximize{wj}
∑n

j=1wj

(
1
j

∑j
k=1

(
n−1
k−1
)
pk−1(1− p)n−k

)
s.t.

∑n
j=1wj = V,

wj ≥ 0, j = 1, . . . n.

(5)

An optimal solution to this LP is set wj∗ = V for the index with the largest coefficient multiplying wj
in the objective, i.e., the wj corresponding to

j∗ = arg max1≤j≤n

{
1
j

j∑
k=1

(
n−1
k−1
)
pk−1(1− p)n−k

}
, (6)

and wj = 0 for all j 6= j∗. We note here that there are only finitely many values of p for which the arg max
is non-unique, because if the maximum is achieved at two different values j, j′ then this implies that p
satisfies a non-trivial polynomial equation, i.e.

1
j

j∑
k=1

(
n−1
k−1
)
pk−1(1− p)n−k = 1

j′

j′∑
`=1

(
n−1
`−1
)
p`−1(1− p)n−`.
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What contest structure, i.e., actual awarded prizes (v1, . . . , vn) does this LP solution correspond to?
Recall our transformation of variables wj = j(vj − vj+1). With wj∗ = V and the remaining wj set to 0, the
prizes vj in an optimal contest are then:

vj = V
j∗ , 1 ≤ j ≤ j∗, and vj = 0, j∗ < j ≤ n.

Recall that the equation (6) defining j∗ has a unique solution apart from a finite number of exceptional
values of p. These exceptions correspond, under the strictly monotone function c∗(p), to a finite number
of exceptional values of c; for all other c there is a unique optimal contest and it is a simple contest. We
summarize this result in the following theorem.

Theorem 3.1. For every value of total prize V and participation cost c, there is an optimal contest which
awards equal prizes V/j∗ to some top j∗ ranks, and a prize of 0 to all ranks j∗ + 1 and below. Apart from
finitely many exceptional values of c, this is the unique optimal contest.

3.4 Understanding the behavior of the optimal contest

The result in Theorem 3.1 illustrates the structure of optimal contests, namely that there are only two levels
of prizes—equal prizes to some top j∗ contestants, and a prize of 0 to all lower-ranked contestants. This
description of the optimal contest is complete except for one crucial piece of information: what is the value
of j∗? In this subsection, we seek to understand how the total number of prizes in the optimal contest, j∗,
varies with the parameters of the contest: the total prize V , participation cost c, and number of potential
contestants, n.

A basic question regarding the optimal number of prizes, j∗, concerns comparative statics: is j∗ mono-
tonic as a function of participation cost? It is intuitively clear that as the cost of participation, c, increases,
the ex ante probability of an individual agent participating in the equilibrium of the optimal contest, p∗(c),
must decrease; this intuition was confirmed rigorously in §3.2. On the other hand, the monotonicity of j∗

as a function of c is much less apparent: as the cost of participation increases, should the contest designer
offset the cost increase by increasing the magnitude of prizes (which necessitates reducing the total number
of prizes offered, and thus the probability of winning a prize) or by increasing the total number of prizes
(which increases the probability of winning a prize but reduces the magnitude of each prize)? The following
proposition implies, among other things, that an optimal contest designer responds to increasing partici-
pation costs by offering the same or smaller number of prizes. All proofs in this section are deferred to
Appendix ??.

Proposition 3.2. Fix a total prize, V , and number of potential contestants, n. Let Mj denote a simple
contest that awards equals prizes V/j to the top j ranks.

1. There is a decreasing sequence V = c1 > c2 > · · · > cn > cn+1 = 0, such that for any participation
cost c < V , the simple contestMj is optimal if and only if cj+1 ≤ c ≤ cj .

2. For 1 < j ≤ n, the equation cMj (p) = cMj−1(p) has a unique solution pj in the interval (0, 1), and
cj = cMj (pj) = cMj−1(pj).

Proposition 3.2 allows us to draw a number of quantitative conclusions about j∗, the number of prizes
offered by the optimal contest. The following proposition identifies a precise criterion for optimality of the
winner-take-all contestM1; for every fixed j it identifies an asymptotic formula for pj as n→∞, yielding
a criterion for optimality ofMj that holds for all sufficiently large population sizes; and finally, it presents
an asymptotic estimate of the number of prizes offered by the optimal contest, and the expected number of
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participants in equilibrium, in terms of the ratio ν = V/c. We call this ratio the scale of the contest, because
ν is clearly an upper bound on the number of prizes that can be awarded, if each prize must be at least large
enough to cover agents’ participation costs. Proposition 3.3 shows that both the number of prizes awarded
and the expected number of participants are asymptotic to ν minus a lower-order term. In other words, as
the total prize offered grows large compared each individual agent’s participation cost, the equilibrium of
the optimal contest asymptotically approaches the ideal of “perfect coordination”, in which each of the top
bV/cc agents (ranked by quality) is asked to participate and paid just enough to cover their participation
cost, despite the total lack of coordination among agents.

Proposition 3.3. Fix V, c, and let j∗,n denote the number of prizes offered by the optimal contest with
population size n. Let p∗,n denote the probability that an individual agent participates in the equilibrium of
that contest, and let λ∗,n = p∗,n ·n denote the expected number of participants in that equilibrium.

1. The winner-take-all contest is optimal if and only if Vc ≤
(

1 + 1
n−1

)n−1
. In particular, for V

c > e

a winner-take-all contest is never optimal, whereas for V
c < e it is optimal whenever the population

size, n, is sufficiently large.

2. As n→∞, the sequence λ∗,n converges to the unique λ∗ > 0 satisfying

max
1≤j≤V/c

{
V
j

j−1∑
k=0

e−λλk

k!

}
= c. (7)

Excluding a countable set of values for c, the maximum in (7) is achieved at a unique value j∗, and
the sequence j∗,n converges to j∗ as n→∞.

3. Letting ν = V/c, for any n > 2ν the values of λ∗,n and j∗,n satisfy

λ∗,n = ν −Θ(
√
ν log ν), j∗,n = ν −Θ(

√
ν/ log ν). (8)

4 Arbitrary quality-cost distributions

We now proceed to settings where agents have heterogeneous costs ci in addition to differing output qualities
qi, modeled via a general joint distribution F (q, c) on agents’ costs and output qualities. Throughout this
section, we assume that F (q, c) is absolutely continuous with respect to Lebesgue measure, i.e., every
measure-zero set of (q, c) pairs also has zero probability under the distribution F (q, c).

When output qualities and costs can have arbitrary correlations, much of the structure we saw in the pre-
vious section vanishes. Specifically, equilibria no longer need possess a threshold structure, where all agents
whose output quality is greater than a threshold participate and the remaining agents do not. (For example,
a very high-ability agent producing very high quality might also have a prohibitively high cost preventing
entry, whereas a lower-ability agent might still find it profitable to participate because of an adequately
low participation cost ci.) The absence of such a threshold equilibrium structure under heterogeneous costs
means that unlike with homogeneous costs, there may be no single contestM that is optimal for all increas-
ing objective functions f . (See §4.3 for a simple example that illustrates this point; we present a distribution
for which there is no contest M that simultaneously optimizes the sum objective and the max objective.)
Specifying an optimal contest, therefore, involves also choosing the objective that the mechanism designer
wants to maximize.
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Motivated by the fact that many contests are aimed at obtaining one best innovation or solution to a
problem, or one best design, and so on, a significant fraction of the literature on contest design has focused
on the max objective, i.e., the expected quality of the highest-ranked submission. In keeping with this
motivation and literature, we focus on the max objective in this section (although we note that a number
of other objectives, such as the sum or more generally, the sum of the top k outputs, have also been used
in prior work, and are potentially well-motivated in the settings we consider as well). Given a total prize
V , and n agents with types (qi, ci) drawn from F , we will therefore define an optimal contest to mean any
mechanismM = M(v1, . . . , vn) such that some symmetric pure-strategy equilibrium ofM achieves the
maximum E[max{qi | i ∈ S(π∗(M))}] over all symmetric pure-strategy equilibria π∗(M) of all contests
M with

∑
vj = V , where the set S(π) is as defined in §2.16

With general type distributions F , an agent’s type is necessarily two-dimensional and cannot be char-
acterized by a single number. This is in contrast with §3, where agents had homogeneous costs (an agent’s
type is essentially just her output quality qi), as well as models with strategic effort choices in the prior
literature where an agent’s type is typically either her ability, or her cost per unit effort. With such arbi-
trary two-dimensional types, an equilibrium analysis that characterizes equilibrium outcomes in an arbitrary
rank-order mechanism appears to be fairly challenging, which means that the standard approach to solv-
ing optimal contest design problems—first explicitly solve for equilibrium outcomes for general rank-order
mechanisms M(v1, . . . , vn), and then optimize over the choice of feasible (v1, . . . , vn) to maximize the
objective achieved by a mechanism in equilibrium—cannot be directly applied here.

Rather than derive the optimal mechanism, therefore, we ask how well simple mechanisms —
mechanisms that award equal prizes V/j to the highest-ranked j agents, for some j— can perform, in
terms of the expectation of the highest-quality output in equilibrium relative to an optimal mechanism. In
this section, we will show that the winner-take-all mechanism (corresponding to j = 1), which awards the
entire prize budget V to the participant with the highest quality output, is a 3-approximation to the optimal
mechanism.

Existence and uniqueness of pure strategy equilibria Before delving into the analysis of symmetric
equilibria of contests under arbitrary joint distributions F , we pause here to mention some basic facts which
ensure that the analysis is meaningful. Proofs of these facts are given in Appendix B. First, for every contest
M there exists a symmetric mixed-strategy equilibrium. Second, all mixed-strategy equilibria of M are
“pure almost everywhere,” in the sense that the set of types that randomize in equilibrium has measure zero.
Third, the symmetric equilibrium of M is unique up to an indeterminacy on a measure-zero set of types
(q, c).

4.1 Sub-equilibrium lemma

As discussed above, solving for the equilibrium of a mechanism under arbitrary joint distributions F is
challenging. To circumvent the need to solve for equilibria, we instead relate the expected outcome in an
equilibrium of the winner-take-all mechanismMWTA to that in an optimal mechanism by identifying and
analyzing sub-equilibrium strategy profiles inMWTA, as defined below.

Definition 4.1. A strategy profile (π1, . . . , πn) is a sub-equilibrium of a given contest if it satisfies ex interim
individual rationality: for any player i and type (qi, ci) such that πi(qi, ci) = 1, the expected payoff of
player i from participating, conditional on having type (qi, ci), is greater than or equal to ci when n − 1
remaining players with types drawn from F (q, c) play according to π. (Note that individual rationality

16As before, we restrict our attention to symmetric equilibria and henceforth omit the modifier “symmetric.”
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vacuously holds for non-participants, i.e., agents with πi(qi, ci) = 0, since non-participation yields zero
utility and is therefore always individually rational.) We say that a pure strategy π is a sub-equilibrium if
the corresponding symmetric strategy profile ~π with πi = π for all i is a sub-equilibrium.

A sub-equilibrium is a strategy profile that is equilibrium-like, but not quite an equilibrium: all agents
who do participate derive non-negative utility, so that their action choice is indeed a best response, but there
might be non-participating agents who would derive non-negative expected utility from participation given
other agents’ strategies, so that these agents’ choices do not constitute a best response. A sub-equilibrium is
therefore a strategy profile with ‘too little’ participation, where all participants are playing a best response,
but non-participants might have a profitable deviation.

The interpretation of sub-equilibria as strategy profiles with ‘too little’ participation suggests that if πS is
a sub-equilibrium and πE is an equilibrium, then the quality of an agent’s output (treating non-participation
as zero quality) in πE should stochastically dominate the agent’s output quality in πS . Lemma 4.1 below
confirms this intuition. Note, however, that it is not obvious that this intuition should be valid: some agent
types who choose non-participation in πS may choose to participate in πE , but the participation of these
types may adequately decrease the probability of winning for other agent types to cause them to flip their
choice from participation to non-participation, as a rational response to the increased competition. That
these effects should lead, on net, to stochastic dominance appears a priori to be far from evident.

Lemma 4.1 (Sub-equilibrium Lemma). Fix a joint distribution F (q, c) of types in an n-player contest
M = M(v1, . . . , vn). Assume that v1 6= vn and that the marginal distribution of q has no point masses.
If pure strategy πS is any sub-equilibrium and pure strategy πE is any equilibrium ofM, then the random
variable q · πE(q, c) stochastically dominates the random variable q · πS(q, c).

Proof. Let FS , FE denote the cumulative distribution functions of the random variables q · πS(q, c) and
q ·πE(q, c), respectively. The lemma asserts that FS(x) ≥ FE(x) for all x. Our assumption that the marginal
distribution of q has no point masses implies that the marginal distributions of q · πS(q, c) and q · πE(q, c)
likewise have no point masses and hence FS , FE are continuous functions on the set of non-negative real
numbers, R+.

If an agent i with type (q, c) chooses to enter the contestM, and all other agents play strategy profile
πS−i, then the probability that a given one of those opponents participates and ranks above agent i is 1 −
FS(q). Therefore, if agent i chooses to participate, the probability that she ranks jth is equal to

(
n−1
j−1
)
(1 −

FS(q))j−1FS(q)n−j and her expected prize is equal to
∑n

j=1 vj
(
n−1
j−1
)
(1 − FS(q))j−1FS(q)n−j . Recalling

the definition of the function cM from §3, we see that an agent with type (q, c) who chooses to participate
when the opponents play strategy profile πS−i will gain an expected reward of cM(1− FS(q)).

To prove that FS(x) ≥ FE(x) for all x, we argue by contradiction. Assume that FS(x0) < FE(x0).
Since the function G = FE −FS is continuous on R+, there is an open interval I containing x0 such that G
is strictly positive on I ∩R+. The union of all such open intervals is itself a non-empty open interval (x, x);
here we allow x = −∞ or x = +∞, or both. We know that x > 0 because x > x0. In 0 < x < ∞, then
the continuity of G implies that G(x) = 0 and that

lim
x→x

G(x) = 0. (9)

If x =∞ then FE(x) and FS(x) both converge to 1 as x→ x, and so again (9) holds.
For any (q, c) ∈ R2

+ such that πS(q, c) = 1 and x < q < x, we have

c ≤ cM(1− FS(q)) < cM(1− FE(q)), (10)
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where the first inequality expresses the individual rationality constraint in the definition of sub-equilibrium,
and the second inequality holds because FE−FS is positive on interval (x, x) and the function cM(1−y) is
strictly increasing in y (by Lemma 3.1). Since πE is an equilibrium, inequality (10) implies that πE(q, c) =
1, since cM(1−FE(q)) is the expected prize to an agent with quality q in the strategy profile πE . Thus, we
have shown that πS(q, c) = 1 implies πE(q, c) = 1 when x < q < x. Now, if x < x0 < x1 < x, we have

FS(x1)− FS(x0) = Pr
(q,c)

(x0 < q < x1, π
S(q, c) = 1)

≤ Pr
(q,c)

(x0 < q < x1, π
E(q, c) = 1) = FE(x1)− FE(x0)

and by rearranging terms on the left and right sides we find that G(x) ≥ G(x0) > 0 for all x ∈ (x0, x).
This means that limx→xG(x) cannot be 0, contradicting (9) and completing the proof.

Recall from §2 that S(π) is the (random) set of participants when all agents make participation decisions
according to strategy profile π. The following immediate corollary of Lemma 4.1 will be needed in the
sequel.

Corollary 4.1. Fix a joint distribution F (q, c) of types in an n-player winner-take-all contest MWTA.
Assume that the marginal distribution of q has no point masses. If pure strategy πS is any sub-equilibrium
and pure strategy πE is any equilibrium of M, then max{qi|i ∈ S(πE)} stochastically dominates the
random variable max{qi|i ∈ S(πS)}.

4.2 Winner-take-all is a 3-approximation of the optimal contest

We will now sketch the proof that the expected value of the maximum quality entry in any pure-strategy
equilibrium of the winner-take-all contest MWTA is no smaller than one-third of the expected maximum
quality in the best equilibrium of an optimal contestM∗.

Consider an optimal contestM∗ and let πE denote its symmetric equilibrium (recall that πE is unique).
We use E∗ = S(πE(M∗)) to denote the random set of participant types in the equilibrium strategy profile
πE(M∗) ofM∗, and let the random variable m(E∗) = max{qi | i ∈ E∗} denote the maximum quality in a
particular instantiation of the random set E∗ (recall that the principal’s objective is to maximize the expected
highest quality). Note that

m(E∗) ≤ max
{
qi | i ∈ E∗; ci ≤ V

2

}
+ max

{
qi | i ∈ E∗; ci > V

2

}
,

since the highest-ability agent that participates in M∗ for any given random instantiation of E∗ has cost
either less than, equal to, or greater than V/2. (We define the max of an empty set to be zero.)

We will use OPT to denote the expected value of m(E∗) over the random draws of the n types (q, c).
Since the inequality above holds pointwise, it also holds in expectation:

OPT = E[m(E∗)] ≤ E
[
max

{
qi | i ∈ E∗; ci ≤ V

2

}]
+ E

[
max

{
qi | i ∈ E∗; ci > V

2

}]
. (11)

Now consider the winner-take-all mechanismMWTA. Denote the expected value of the maximum output
qi amongst the set of agents participating in the equilibrium πE(MWTA) of the winner-take-all mechanism
by WTA, i.e.,

WTA = E[max{qi|i ∈ S(πE(MWTA))}].

We will show that 3·WTA ≥ OPT by showing that the first term is (11) is no larger than twice WTA and
the second term in (11) is no larger than WTA. That is, imagine the expected quality of the best submission
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in the optimal contest as ‘split’ across two subpopulations—the low-cost subpopulation (with ci ≤ V/2),
and the high-cost subpopulation (with ci > V/2). We show that the winner-take-all mechanism does at
least as well as the optimal mechanism ‘restricted’ to the high-cost subpopulation, and no worse than half
as badly as the optimal mechanism ‘restricted’ to the low-cost subpopulation. Note that the nature of these
comparisons should not be entirely unexpected from our results in §3—in a homogeneous-cost model, the
winner-take-all mechanism is suboptimal when participation costs are small relative to the total prize, but
optimal when the cost c is large enough compared to V , suggesting thatMWTA is likely to ‘lose’ relative
to the performance of an optimal contest with a low-cost subpopulation, but not a high-cost subpopulation.
The following two inequalities summarize this discussion.

WTA ≥ 1

2
E[max{qi | i ∈ E∗; ci ≤ V

2 }] (12)

WTA ≥ E[max{qi | i ∈ E∗; ci > V
2 }] (13)

The proofs of both inequalities are presented in Appendix C. Both proofs rely on Lemma 4.1, the sub-
equilibrium lemma: in both cases, the proof proceeds by constructing a sub-equilibrium of MWTA and
showing that the expectation of the maximum quality in that sub-equilibrium—for brevity, the value of the
sub-equilibrium—is an upper bound on the corresponding term in (11), or half of that term in the case of
Inequality (12). To prove Inequality (12), we use a sub-equilibrium in which agents participate if their cost
is at most V2 and their quality is at least µ, where µ is chosen so that the probability that max{qi | ci ≤ V

2 }
exceeds µ is exactly 1

2 . This is easily seen to be a sub-equilibrium: agents only participate if their probability
of winning is at least 1

2 in which case their expected prize is at least V2 , while their cost is at most V2 , which
guarantees a non-negative utility. The proof that the value of the sub-equilibrium is at least the RHS of
Inequality (12) is similar to Samuel-Cahn’s [1984] proof of the Prophet Inequality. To prove Inequality (13)
we use a different sub-equilibrium, where the set of participating agent types equals the set of all types that
participate in the equilibrium of the optimal contest and have cost greater than V

2 . The value of this strategy
profile is precisely the second term in (11); the difficulty here is to prove that the strategy profile is indeed
a sub-equilibrium.We do this by showing that any monotone rank-order mechanism is payoff equivalent
to a randomization over simple contests, i.e., contests which award j equal prizes. This means that for
a type (q, c) that participates in the equilibrium of the optimal contest, it must be individually rational to
participate in at least one simple contest. An agent with cost greater than V

2 cannot find it individually
rational to participate in any simple contest that awards more than one prize, so for the participating types
in our putative sub-equilibrium, participation in a simple contest with one prize—that is, a winner-take-all
contest—must be individually rational. This shows that the putative sub-equilibrium is actually a sub-
equilibrium and completes the proof.

We note that neither of these proofs rely on any structural property specific to the optimal contest:
all steps in both proofs remain valid if we instead compare MWTA to an arbitrary monotone rank-order
mechanism respecting the sum constraint (

∑n
j=1 vj = V ), whether or not it is optimal. In fact, this aspect

of our proofs is in some sense inevitable since we have almost no insight into the structure of the optimal
contest in this setting with two-dimensional agent types resulting from arbitrary quality-cost distributions;
the analysis therefore necessarily relies on properties that hold for all feasible contests.

Inequalities (12) and (13) combine to yield our main approximation result.

Theorem 4.1. The expected maximum output in the winner-take-all mechanism is at least one-third that in
the optimal mechanism: OPT ≤ 3·WTA.
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4.3 Dependence on the objective function

We conclude this section with a simple example illustrating an important difference between the general
two-parameter setting studied in this section and the homogeneous-cost setting in §3. Unlike the case of
homogeneous costs, for a general joint distribution of output quality and cost, there may be no single contest
that is optimal for all choices of the increasing objective function f : Example 4.1 below presents a joint
distribution F (q, c) such that the optimal contest for the sum objective differs from the optimal contest for
the max objective.

Example 4.1. Suppose that the joint distribution F (q, c) is supported on the squares [1, 1 + ε]× [1− ε, 1]
and [20, 21] × [9V10 − 1, 9V10 ], with probability density 1/(2ε2) on the first square and 1/2 on the second
one. (Thus, to sample from F (q, c) one first selects among the two squares with equal probability, then one
chooses a uniformly random point in the selected square.) Denote the types (q, c) with q > 1 + ε as high
types and those with q ≤ 1 + ε as low types. Assume that 0 < ε� 1 and n� V � 1.

Choose x ∈ [20, 21] to satisfy Pr(q,c)∼F (q < x) = (9/10)1/n. Equivalently,

Pr(max{q1, . . . , qn} < x) = 9
10

when n independent types (qi, ci) are sampled from F . An agent whose output quality is greater than x has
probability at least 9/10 of having the highest ability among all agents. Such an agent gains an expected
prize of at least 9V/10 in a winner-take-all contestMWTA, no matter what strategy profile the other agents
use, and therefore the equilibrium of MWTA has full participation of agents with quality greater than x.
The probability that at least one of the n agents samples a type (qi, ci) with qi > x is 1

10 , so the expectation
of the maximum output quality in the equilibrium of the winner-take-all contest is at least x

10 > 2.
In comparison, any contest with v1 < 9V

10 − 1 cannot elicit the participation of any high-type agents,
and hence the expectation of the max objective, in the equilibrium of such a contest, is less than 1 + ε. This
shows that the optimal contest for the max objective must satisfy v1 ≥ 9V

10 − 1.
Now consider the sum objective. IfM denotes a contest that offers V/2 equal prizes of size 2, we claim

that in the equilibrium ofM, the expected sum of output qualities is at least V/4. Indeed, high types do not
participate in equilibrium (the prize is less than their cost) so only the low types participate. Let y ∈ [1, 1+ε]
be such that, in expectation, exactly V/4 of the low types among {(q1, c1), . . . , (qn, cn)} satisfy qi > y. By
Markov’s Inequality, the probability that more than V/2 low types with qi > y participate is at most 1/2,
and hence an agent i with qi > y has probability at least 1/2 of winning a prize of size 2. If the agent is
of low type, then the expected prize exceeds the agent’s cost, and consequently all of the low-type agents
with qi > y will participate in equilibrium. The expected number of such agents is V/4 and each of them
contributes an output of quality at least 1, so that expectation of the sum objective in equilibrium is at least
V/4 as claimed.

In comparison, in any contest with v1 ≥ 9V
10 − 1, the total prize awarded to contestants in ranks 2 and

higher is at most V10 +1. Define a random variable Z to be equal to the total cost expended by the agents who
participate and place in ranks 2 and higher. Individual rationality dictates that E[Z] ≤ V

10 + 1. However,
the ratio q/c is at most 1+ε

1−ε for all points (q, c) in the support of the type distribution. Consequently, the
expected total quality of the submissions from agents who place in ranks 2 and higher is bounded above by
1+ε
1−ε
(
V
10 + 1

)
. The top-ranked agent has output quality at most 21, and hence the expectation of the sum

objective in equilibrium is at most 21 + 1+ε
1−ε
(
V
10 + 1

)
, which is less than V

4 for sufficiently large V .
To summarize, we have shown that the optimal contest for the max objective satisfies v1 ≥ 9V

10 − 1
whereas the optimal contest for the sum objective satisfies v1 < 9V

10 − 1, so no single contest is optimal is
optimal for both objectives.
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5 Discussion

In this paper, we explored behavioral design—the idea that ‘non-standard’ agent behavior might have con-
sequences for the optimal design of economic environments—via the specific problem of contest design for
simple agents, who strategize only about whether or not to participate in a system rather than also strategiz-
ing about the input they provide to it.

Our results have potential practical implications for the design of contests as well as contest-like envi-
ronments (such as online communities that hand out virtual rewards to top contributors) where the quality
of a participant’s contribution is not the result of strategic deliberation. The structure of optimal contests in
homogeneous cost environments suggests, for example, that a website might create stronger incentives for
optimal contribution if it awards a (suitably-chosen) number of identical badges to top contributors instead
of rewarding top contributors via recognition on a leaderboard, which might yield unequal rewards at dif-
ferent leaderboard ranks. In settings with heterogeneous costs, as in online crowdsourcing contests where
participants may differ both in expertise and in cost (of effort or time) to contribution, our results show that
a detail-free winner-take-all mechanism, while not necessarily optimal, is always approximately optimal—a
guarantee which does not depend, for example, on the specific form of the cost-quality correlation, or the
size of the contestant population, or the available total reward.

The differing structure of equilibria in the homogeneous and heterogeneous cost settings, as well as the
example in §4.3 showing that the same contest cannot simultaneously (exactly) optimize the max and sum
objectives with heterogeneous costs, suggest another interesting practical implication. The designer of an
online community in which contribution is perceived as essentially equally costly by all agents does not
have to choose whether her objective is to maximize participation (‘build a community’), or maximize the
quality of the best contribution or the best few contributions (‘create excellent content’), or any combination
thereof—as we saw in §3, all (increasing) objectives of the designer are maximized by the same reward
structure in this setting. In contrast, the designer of a platform where users may have differing costs to
participation—such as busy experts with a high time-cost to contribution versus users with lower exper-
tise and lower costs—might have to make a choice about which objective she would like her platform to
optimize, and design her choice of rewards accordingly.

5.1 Further directions

Our results answer the question of how to design optimal contests for simple agents—exactly, under
homogeneous costs, and approximately, for hetereogeneous costs, and suggest that ‘non-standard’ agent
behavior can indeed have consequences for optimal design, as well as lead to interesting new theoretical
questions. At the same time, our work also raises more questions than it answers—at various levels—and
points to several avenues for further work.

Robustness. An intriguing family of open questions, in the specific setting of optimal contest design for
simple agents, centers around the theme of robustness or simultaneous approximate optimality.

• Robustness to objective: We saw that the winner-take-all mechanism, which awards the entire prize of
V to the top-ranked agent, is a 3-approximation for the max objective in the setting with arbitrary cost-
quality correlations. Are there simple, detail-free, contests that are also simultaneously approximately
optimal for other objectives that the designer might have, such as the sum of qualities?

• Robustness to parameters: Consider the setting with homogeneous costs, where we showed that op-
timal contests are simple, i.e., award equal prizes to the k top-ranked agents for some k. A principal
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without complete knowledge of the population parameters might choose the wrong number of prizes.
How suboptimal can the ‘wrong simple contest’ be, and is there a contest which is nearly optimal for
all population parameters17?

• Robustness to population: The model in our paper assumes that all agents are simple, whereas the
past literature on contest design involved models where all agents make strategic effort choices. What
if the population consists of a heterogeneous mix of agent types—those who make participation-only
choices, and those who make strategic effort choices as well? Are there mechanisms that are robust
to such heterogeneity in the sets of alternatives from which agents choose actions?

Exploring the robustness and suboptimality of simple contests is a practically relevant, although theoreti-
cally challenging, direction for further work, since a principal designing a real-world contest is more likely
than not to suffer from uncertainty regarding population parameters, as well as have agents of differing
types in her population.

Tournament design. A second question concerns optimal tournament design for simple agents. In this
paper, we restricted ourselves to choosing amongst rank-order mechanisms where an agent’s reward depends
only on her rank amongst all competitors. In general, of course, competitions need not be restricted to such
reward structures: indeed, many real-life contests do split agents into subdivisions or categories, and award
category-specific as well as overall prizes. Analogous to the reward allocation problems analyzed in [22]
(which build on the techniques developed for optimal contest design in [21]) for agents who make strategic
effort choices, what are optimal tournament designs for simple agents?

More generally, the notion of simple agents—agents who reason strategically about whether, but not
about how, to participate in a system—seems to be a natural one in many scenarios. In addition to our
running example of online content contribution platforms, settings such as crowdfunding websites (where
investors might decide whether or not to contribute a recommended sum, rather than strategize over how
much to contribute), online ratings, or voting (on content, or in participatory democracies) might elicit such
simple behavior from at least some of the user base. How does the design of optimal mechanisms change
when agents make participation-only choices?

While one might expect that a model with simpler agents ought to result in simpler mechanism design
questions, we have seen in §4 that restricting agents to make discrete (binary) choices rather than selecting a
level of effort from a continuous interval leads to qualitatively different equilibria and requires qualitatively
different analysis techniques. This suggests that designing for simple agents—a problem that might arise in
a variety of economic settings—may require the development of new theoretical tools and techniques.

Finally, a population of simple agents is one particular instance of a model for behavioral mechanism
design, aimed at more effectively incentivizing desired outcomes in an environment by using more accu-
rate models of agent behavior in that environment. A range of other deviations from idealized, or standard,
models of behavior have also been discussed in the literature, ranging from workers’ preferences in online
crowdsourcing labor markets [14], to a vast variety of biases and fallacies documented in the growing be-
havioral economics literature. The problems of developing better models of agent behavior in economic
environments—an empirical and experimental question—and that of optimally designing mechanisms or
markets for the real populations they are targeted at—a theoretical question—are closely intertwined, and
constitute a promising and exciting direction for future research.

17Note that the answer to this last question might depend on the objective that the designer wants to optimize.
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A Proofs from Section 3

This section provides proofs deferred from §3. We begin by restating and proving Proposition 3.1.

Proposition 3.1. For any monotone rank-order mechanismM, there is a symmetric equilibrium in threshold
strategies where every agent with quality qi ≥ q∗ participates, and every agent with quality qi < q∗ does
not participate; the equilibrium threshold q∗ satisfies cM(1 − F (q∗)) = c. This is the unique symmetric
equilibrium ofM.

Proof. Let π be any symmetric pure-strategy equilibrium ofM and let q0 = inf{q | π(q, c) = 1}. By the
definition of q0, for any q > q0 there is some q1 ≤ q such that π(q1, c) = 1. Since π is an equilibrium, this
implies that an agent with quality q1 earns an expected prize greater than or equal to c in a contest with n−1
potential opponents each playing strategy π. SinceM is monotone, the expected prize given to an agent is
a non-decreasing function of her output quality, so that an agent with quality q > q1 earns an expected prize
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greater than or equal to her cost: since ties are broken in favor of participation, this means that π(q, c) = 1;
and this holds for all q > q0. By the definition of q0, π(q, c) = 0 for all q < q0; finally, our rule that ties are
broken in favor of participation, combined with our assumption that the distribution of q has no point-mass
at q0, ensures that π(q0, c) = 1. Hence, π is a threshold-strategy equilibrium with threshold q∗ = q0.

Next we characterize the equilibrium threshold q∗, and argue that it is the solution to cM(1−F (q∗)) = c.
Note that when all agents play strategy π, 1 − F (q∗) is the probability that a given agent participates
and contributes an output with quality greater than or equal to q∗. Recalling our definition of cM, and
noting that when agents play according to π they never contribute outputs with quality less than q∗, we
can now conclude that cM(1 − F (q∗)) is equal to the expected prize earned by a contestant with quality
q ≤ q∗ when the opponents play according to π. If this were less than c, then it could not be the case that
π(q∗, c) = 1 in equilibrium. On the other hand, if cM(1 − F (q∗)) were greater than c, then the expected
prize earned by any participating agent with quality q ≤ q∗ is greater than c and consequently all such
agents should participate in equilibrium, contradicting the fact that π(q, c) = 0 for q < q∗. Since each of
the inequalities cM(1 − F (q∗)) < c and cM(1 − F (q∗)) > c leads to a contradiction, it must be the case
that cM(1− F (q∗)) = c.

Continuing with deferred proofs from §3, let us restate and prove Proposition 3.2.

Proposition 3.2. Fix a total prize, V , and number of potential contestants, n. Let Mj denote a simple
contest that awards equals prizes V/j to the top j ranks.

1. There is a decreasing sequence V = c1 > c2 > · · · > cn > cn+1 = 0, such that for any participation
cost c < V , the simple contestMj is optimal if and only if cj+1 ≤ c ≤ cj .

2. For 1 < j ≤ n, the equation cMj (p) = cMj−1(p) has a unique solution pj in the interval (0, 1), and
cj = cMj (pj) = cMj−1(pj).

Proof. Let us compare the simple contestsMj andMj−1, for 1 < j ≤ n. For a given participation cost,
c, let qj and qj−1 denote the equilibrium thresholds ofMj andMj−1, respectively. The probability that an
individual agent participates in the equilibrium ofMj (resp.Mj−1) will be denoted by pj = 1 − F (qj),
resp. pj−1 = 1−F (qj−1). From Proposition 3.1 we know that c = cMj (pj) = cMj−1(pj−1),which implies

0 = cMj (pj)− cMj−1(pj−1) = [cMj (pj)− cMj−1(pj)] + [cMj−1(pj)− cMj−1(pj−1)]. (14)

Combining this equation with the fact that the function cMj−1 is strictly decreasing (Lemma 3.1) we obtain
the following chain of equivalences:

pj > pj−1 ⇐⇒ cMj−1(pj) < cMj−1(pj−1)⇐⇒ cMj (pj)− cMj−1(pj) > 0. (15)

Thus, the question of which mechanism, Mj or Mj−1, has a higher rate of participation in equilibrium
reduces to evaluating whether cMj − cMj−1 is positive or negative at pj . To understand the sign of the
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function cMj − cMj−1 on the interval [0, 1], the following calculation is crucial.

cMj(p) − cMj−1(p) = V
j

j∑
k=1

(
n−1
k−1
)
pk−1(1− p)n−k − V

j−1

j−1∑
k=1

(
n−1
k−1
)
pk−1(1− p)n−k

= V
j

(
n−1
j−1
)
pj−1(1− p)n−j +

j−1∑
k=1

(
V
j −

V
j−1

) (
n−1
k−1
)
pk−1(1− p)n−k

= V
j (1− p)n−1

(
n−1
j−1
) ( p

1−p

)j−1
− V

j(j−1)(1− p)
n−1

j−1∑
k=1

(
n−1
k−1
) ( p

1−p

)k−1
= V

j(j−1)(1− p)
n−1

[
(j − 1)

(
n−1
j−1
) ( p

1−p

)j−1
−

j−1∑
k=1

(
n−1
k−1
) ( p

1−p

)k−1]

Letting x = p
1−p we have derived

cMj(p) − cMj−1(p) = V
j(j−1)(1− p)

n−1

[
(j − 1)

(
n−1
j−1
)
xj−1 −

j−1∑
k=1

(
n−1
k−1
)
xk−1

]
(16)

The polynomial (j − 1)
(
n−1
j−1
)
xj−1 −

(
n−1
j−2
)
xj−2 −

(
n−1
j−3
)
xj−3 − · · · −

(
n−1
1

)
x − 1 appearing on the right

side of (16) is negative at x = 0, tends to +∞ as x → ∞, and by Descartes’ Rule of Signs, it has a single
positive real root, r. Accordingly, there is a unique pj = r

r+1 in the interval (0, 1) satisfying the equation
cMj (pj) = cMj−1(pj), and the quantity cMj (p) − cMj−1(p) is positive if and only if p > pj . As we vary
the participation cost, c, the equilibrium participation probability of the simple contestMj , namely pj , is
a decreasing function of c. Therefore, letting cj = cMj (pj) = cMj−1(pj), we have the following chain of
equivalences.

pj > pj−1 ⇐⇒ cMj (pj)− cMj−1(pj) > 0⇐⇒ pj > pj ⇐⇒ c < cj . (17)

The proposition claims that the numbers (cj) form a decreasing sequence. We now turn to the proof of this
fact. Recalling that the equation cj = cMj (pj) = cMj−1(pj) holds for all j ≥ 2, we find that

cj − cj+1 = cMj (pj)− cMj (pj+1). (18)

The function x(p) = p
1−p is an increasing function of p, and cMj (p) is a decreasing function of p. This

justifies the second in the following pair of equivalences.

cj > cj+1
(18)⇐⇒ cMj (pj) > cMj (pj+1) ⇐⇒ x(pj) < x(pj+1), (19)

We are left with proving that the RHS of (19) is valid. For every j ≥ 2 define the polynomial

Qj(x) = (j − 1)
(
n−1
j−1
)
xj−1 −

j−1∑
k=1

(
n−1
k−1
)
xk−1. (20)

We know from (16) and the ensuing paragraph that the sign of Qj(x) is the same as the sign of x − x(pj),
so to prove that x(pj) < x(pj+1), it suffices to show that Qj(x(pj+1)) > 0. The easy calculation

Qj+1(x)−Qj(x) = j
(
n−1
j

)
xj − j

(
n−1
j−1
)
xj−1 = j

(
n−1
j

)
xj−1

(
x− j

n−j

)
, (21)
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combined with the fact that Qj+1(x(pj+1)) = 0, reveals that Qj(x(pj+1)) > 0 if and only if x(pj+1) <
j

n−j . Recalling that x(pj+1) < x if and only if Qj+1(x) > 0, we are left with showing that Qj+1

(
j

n−j

)
>

0. The calculation is as follows.
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(
n−1
j

) ( j
n−j

)j
−

j∑
k=1

(
n−1
k−1
) ( j

n−j

)k−1
=

j∑
k=1

[(
n−1
j

) ( j
n−j

)j
−
(
n−1
k−1
) ( j

n−j

)k−1]

=
(
n−1
j

) ( j
n−j

)j j∑
k=1

[
1− (n−1)!

(k−1)!(n−k)! ·
j!(n−1−j)!

(n−1)! ·
(

j
n−j

)k−1−j]

=
(
n−1
j

) ( j
n−j

)j j∑
k=1

[
1− j!

(k−1)! ·
(n−1−j)!
(n−k)! ·

(
j

n−j

)k−1−j]

=
(
n−1
j

) ( j
n−j

)j j∑
k=1

[
1−

(
j∏
i=k

i
n−i ·

n−j
j

)]

=
(
n−1
j

) ( j
n−j

)j j∑
k=1

[
1−

j∏
i=k

in−ij
jn−ij

]

=
(
n−1
j

) ( j
n−j

)j j−1∑
k=1

[
1−

j∏
i=k

in−ij
jn−ij

]

Recall that we are assuming j > 1, so the sum in the final line is over a non-empty set of indices k. Each
term in the product on the final line is less than or equal to 1, at least one of the terms is strictly less
than 1, so the product is strictly less than 1. This means that each summand on the final line is strictly
positive, so the entire quantity on the final line is strictly positive, as desired. This completes the proof that
Qj+1

(
j

n−j

)
> 0, and as we have seen this implies that cj > cj+1 for j > 1. To complete the proof that

the entire sequence c1, c2, . . . , cn+1 is strictly decreasing, we need only prove that c1 > c2. This inequality
follows easily, once we recall that c1 = V while

c2 = cM2(p2) = V
2

2∑
k=1

(
n−1
k−1
)
pk−12 (1− p2)n−k ≤ V

2

n∑
k=1

(
n−1
k−1
)
pk−12 (1− p2)n−k = V

2 .

It remains to show that Mj is an optimal simple contest if and only if cj+1 ≤ c ≤ cj . Recall that for
every j > 2,Mj has a higher rate of participation thanMj−1, in equilibrium, if and only if c < cj . This
immediately shows that cj+1 ≤ c ≤ cj is a necessary condition forMj to be optimal, as otherwise either
Mj+1 or Mj−1 is superior toMj . To prove that it is also a sufficient condition, we will prove that Mj

is strictly optimal whenever cj+1 < c < cj ; an easy continuity argument then confirms thatMj is weakly
optimal whenever cj+1 ≤ c ≤ cj .

Suppose that cj+1 < c < cj and for every k = 1, . . . , n let pk denote the equilibrium participation
probability forMk. For 2 ≤ k ≤ j we have the string of inequalities c ≤ cj < cj−1 < · · · < ck+1 < ck,
which means that c < ck and hence that pk−1 < pk. Stringing these inequalities together for all k in the
range 2, . . . , j, we find that p1 < p2 < · · · < pj−1 < pj , i.e., Mj has a higher rate of participation, in
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equilibrium, thanMk for any k < j. The argument for k > j is the same with the inequality signs reversed.
For j < k ≤ n we have the string of inequalities c ≥ cj+1 > cj+2 · · · > ck−1 > ck which means that
c > ck and hence that pk−1 > pk. Stringing these inequalities together for all k in the range j + 1, . . . , n,
we find that pj > pj+1 > · · · > pn−1 > pn, i.e.,Mj has a higher rate of participation, in equilibrium, than
Mk for any k > j.

Proposition 3.3 makes three assertions about optimal contests and their equilibria in the setting of ho-
mogeneous costs. We now restate and prove the first two parts of the proposition. The following subsection
presents the proof of the third part.

Proposition 3.3 (parts 1-2). Fix V, c, and let j∗,n denote the number of prizes offered by the optimal contest
with population size n. Let p∗,n denote the probability that an individual agent participates in the equilib-
rium of that contest, and let λ∗,n = n·p∗,n denote the expected number of participants in that equilibrium.

1. The winner-take-all contest is optimal if and only if Vc ≤
(

1 + 1
n−1

)n−1
. In particular, for V

c > e

a winner-take-all contest is never optimal, whereas for V
c < e it is optimal whenever the population

size, n, is sufficiently large.

2. As n→∞, the sequence λ∗,n converges to the unique λ∗ > 0 satisfying

max
1≤j≤V/c

{
V
j

j−1∑
k=0

e−λλk

k!

}
= c. (22)

Excluding a countable set of values for c, the maximum in (7) is achieved at a unique value j∗, and
the sequence j∗,n converges to j∗ as n→∞.

Proof. Proposition 3.2 tells us that the winner-take-all contest is optimal if and only if c ≥ c2 = cM1(p),
where p is the unique solution of the equation cM1(p) = cM2(p). We now calculate:

cM1(p)− cM2(p) = V (1− p)n−1 − V

2

[
(1− p)n−1 + (n− 1)p(1− p)n−2

]
=
V

2
(1− p)n−2 [1− np] .

Hence p = 1
n is the unique solution to cM1(p) = cM2(p). Now we find that

c2 = cM1(p) = V (1− p)n−1 = V
(
1− 1

n

)n−1 (23)

so the requirement c ≥ c2 can be rewritten as c ≥ V
(
n−1
n

)n−1, which in turn can be rewritten as V
c ≤(

1 + 1
n−1

)n−1
, matching the criterion for optimality of winner-take-all claimed in part 1 of the proposition.

The observation that
(

1 + 1
n−1

)n−1
is always less than e, and converges to e as n → ∞, supplies the

justification for the last sentence of part 1.
Moving on to the second part of the proposition, let pj,n denote the equilibrium participation probability

in the simple contestMj when the population size is n. If j > ν = V/c then V/j < c, i.e., winning a prize
inMj is not worth enough to cover the cost of participating. Hence, pj,n = 0 if j > ν. Using the fact that
optimal contests are simple and that a simple contest with j > ν prizes has no participation, we find that

c = c∗(p∗,n) = max
1≤j≤ν

cnMj (p
∗,n), (24)
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where cnMj (·) denotes the function cM(·) defined in Equation (1), specialized to population size n and
contestM =Mj . Under the change of variables λ = λ(p) = n·p, the function cnMj (p) is expressed by the
formula

cnMj (p) = cnMj

(
λ
n

)
= V

j

j−1∑
k=0

(
n−1
k

) (
λ
n

)k (
1− λ

n

)n−1−k
. (25)

For any fixed j, as n→∞ the RHS of (25) converges uniformly as a function of λ ∈ [0, ν]. Indeed, for all
fixed k ∈ N,

lim
n→∞

(
1− λ

n

)n−1−k
=
[

lim
n→∞

(
1− λ

n

)n] · [ lim
n→∞

(
1− λ

n

)−1−k]
= e−λ (26)

lim
n→∞

(
n−1
k

) (
λ
n

)k
= lim

n→∞

k∏
i=1

(
n−i
i ·

λ
n

)
= λk

k!

(
lim
n→∞

k∏
i=1

n−i
n

)
= λk

k! (27)

lim
n→∞

cnMj

(
λ
n

)
= V

j

j−1∑
k=0

e−λλk

k! , (28)

and the convergence on each line of (26)-(28) is uniform over λ ∈ [0, ν].
Let c∞j denote the function appearing on the right side of (28), i.e. c∞j (λ) = V

j

∑j−1
k=0

e−λλk

k! . This is
a continuous and strictly decreasing function of λ, for all λ ≥ 0. To verify this, we can simply take the
derivative with respect to λ.

d

dλ

[
j−1∑
k=0

e−λλk

k!

]
= −e−λ +

j−1∑
k=1

[
e−λλk−1

(k−1)! −
e−λλk

k!

]

= e−λ

[
j−2∑
i=0

λi

i! −
j−1∑
k=0

λk

k!

]
= − e−λλj−1

(j−1)! . (29)

It is easy to see that c∞j (0) = V
j and that limλ→∞ c

∞
j (λ) = 0. Combined with the fact that c∞j is continuous

and strictly decreasing, this means it has a continuous and strictly decreasing inverse function λj(c), defined
for 0 < c ≤ V

j .
Let λj,n = n · pj,n. If n(1) < n(2) < · · · is any infinite sequence of indices such that limi→∞ λ

j,n(i)

exists, then the uniform convergence in Equation (28) combined with the equation cnMj (p
j,n) = c which is

valid for all j, n, imply that

c = lim
i→∞

c
n(i)

Mj (pj,n(i)) = lim
i→∞

c
n(i)

Mj

(
λj,n(i)

n(i)

)
= c∞j

(
lim
i→∞

λj,n(i)
)
. (30)

Recalling that the inverse function of c∞j is denoted by λj , this means that limi→∞ λ
j,n(i) = λj(c).

Recall now that λj,n can be interpreted as the expected number of participants in the equilibrium of
contestMj when the population size is n. This means that the expected total participation cost is λj,n · c.
Individual rationality implies that λj,n · c ≤ V , hence λj,n ≤ V/c = ν. Thus, every element of the infinite
sequence (λj,n)∞n=1 belongs to the interval [0, ν]. Earlier we derived that for every infinite subsequence
that has a limit point, this limit point must be equal to λj(c). It follows that the entire sequence λj,n must
converge to λj(c), as otherwise there would be some ε > 0 and an infinite subsequence belonging to the set
[0, λj(c) − ε] ∪ [λj(c) + ε, ν]. That set is compact, so the infinite subsequence would have a limit point in
the set, contradicting our earlier derivation that every subsequential limit point must be equal to λj(c).

28



Earlier we noted that pj,n = 0 for j > ν; hence p∗,n = max1≤j≤ν{pj,n} and λ∗,n = max1≤j≤ν{λj,n}.
This implies

lim
n→∞

λ∗,n = lim
n→∞

(
max
1≤j≤ν

{λj,n}
)

= max
1≤j≤ν

{
lim
n→∞

λj,n
}

= max
1≤j≤ν

{λj(c)}. (31)

We must show that the right side of (33) is equal to the unique λ∗ > 0 satisfying Equation (22). Using
notation we have introduced in this proof, that equation can be rewritten as

max
1≤j≤ν

{c∞j (λ∗)} = c. (32)

The function h(λ) = max1≤j≤ν{c∞j (λ)}, being a pointwise maximum of continuous and strictly decreasing
functions, is also continuous and strictly decreasing. Thus, there is a unique λ∗ = λ∗(c) satisfying (32).
Let j∗ be the value of j that achieves the maximum in the formula defining h(λ∗), so that c = h(λ∗) =
c∞j∗(λ

∗). Applying the function λj
∗

to both sides of this equation yields λj
∗
(c) = λ∗, and therefore λ∗ ≤

max1≤j≤ν λ
j(c). The inequality cannot be strict, because if λ∗ < λj(c) for some j, then we can apply

the strictly decreasing function c∞j to both sides and conclude that c∞j (λ∗) > cj(λ
j(c)) = c, contradicting

Equation (32).
The proposition also asserts that with the exception of countably many values of c, the maximum in (22)

is achieved by a unique value of j. To show this, consider for any j 6= ` the equation

V
j

j−1∑
k=0

e−λλk

k!
− V

`

`−1∑
k=0

e−λλk

k!
= 0, (33)

which must be satisfied by λ∗(c) whenever the maximum in (22) is achieved at both j and `. For any two
solutions λ0, λ1 of (33), there must be a λ in the open interval (λ0, λ1) such that the derivative of the LHS
of (33) equals zero at λ. We know, from Equation (29), that the derivative of the LHS of (33) is equal to
V e−λ

(
λ`−1

`! −
λj−1

j!

)
, which equates to zero only at λ = (`!/j!)1/(`−j). Thus, Equation (33) can have at

most two solutions for any fixed j, `. Taking the union over all pairs j, `, we find that there are at most
countably many solutions to (33). For any c such that λ∗(c) does not belong to this countable set, the
maximum in (22) is attained at a unique j∗ = j∗(c).

Finally we must prove that when c lies outside this countable set, the sequence j∗,n converges to j∗ as
n→∞. Indeed, we have seen that each element of the sequence (j∗,n)∞n=1 is an integer in the range [1, ν],
so there must be at least one j ∈ [1, ν] that occurs infinitely often in the sequence. We will show that any
such j must equal j∗, from which it follows immediately that j∗,n → j∗ as n→∞.

Now suppose n(1) < n(2) < · · · is an infinite sequence such that j∗,n(i) = j for all i ≥ 1. We have

∀i ≥ 1 c
n(i)

Mj

(
λ∗,n(i)

n

)
= c

n(i)

Mj

(
λj,n(i)

n

)
= c

n(i)

Mj

(
pj,n(i)

)
= c

c∞j (λ∗) = c∞j

(
lim
i→∞

λ∗,n(i)
)

= lim
i→∞

c
n(i)

Mj

(
λ∗,n(i)

n

)
= c (34)

where the last line is justified by the uniform convergence guarantee in Equation (28). We know that
c∞j∗(λ

∗) = c, and our assumption on c implies that for every j′ 6= j∗, c∞j′ (λ
∗) < c. Hence, Equation (34)

implies that j = j∗, which completes the proof of the proposition.
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A.1 Proof of Proposition 3.3, part 3

The proof of Proposition 3.3, part 3 depends on some rather sharp estimates of binomial coefficients. To
derive these estimates, we begin by deriving a non-asymptotic version of Stirling’s approximation for n!.

Lemma A.1. For any positive integer n,

n ln(n)− n+ 1
2 ln(n) + 2

3 < ln(n!) < n ln(n)− n+ 1
2 ln(n) + 1. (35)

Proof. For all k and all t ∈ (0, 1) we have

ln(k) + t (ln(k + 1)− ln(k)) < ln(k + t) < ln(k) + t
k ,

where the left inequality is derived from the strict concavity of the natural logarithm function, and the right
inequality is derived from strict concavity along with the fact that the derivative of the natural logarithm at
k is 1

k . Integrating with respect to t and applying the substitution x = k + t, we find that

ln(k) + 1
2 (ln(k + 1)− ln(k)) <

∫ k+1

k
ln(x) dx < ln(k) + 1

2k . (36)

Now, summing over k = 1, . . . , n− 1,

ln(n!)− 1
2 ln(n) <

∫ n

1
ln(x) dx < ln(n!)− ln(n) +

1

2

n−1∑
k=1

1

k
< ln(n!)− 1

2 ln(n) + γ
2 , (37)

where γ = 0.577 . . . is the Euler-Mascheroni constant and we have used the fact that
∑n−1

k=1
1
k < ln(n) + γ.

Rearranging terms in (37) and using the fact that
∫ n
1 ln(x) dx = n ln(n)− n+ 1, we derive

n ln(n)− n+ 1
2 ln(n) + 1− γ

2 < ln(n!) < n ln(n)− n+ 1
2 ln(n) + 1 (38)

The lemma follows by observing that 2
3 < 1− γ

2 .

Lemma A.2. For any positive integers n and j ≤ n
2 and any p ∈ (0, 1),(

n

j

)
pj(1− p)n−j > 1

4
·
√

1

j
· exp

(
−2(j − pn)2

pn

)
. (39)

Furthermore if j > pn then (
n

j

)
pj(1− p)n−j < exp

(
−(j − pn)2 − 2

2j

)
. (40)

Proof. Using Lemma A.1 and the formula
(
n
j

)
= n!

j!(n−j)! , we obtain the bound

ln

(
n

j

)
= ln(n!)− ln(j!)− ln((n− j)!)

> n ln(n)− j ln(j)− (n− j) ln(n− j) + 1
2 ln

(
n

j(n−j)

)
− 4

3

≥ j ln
(
n
j

)
+ (n− j) ln

(
n
n−j

)
+ 1

2 ln
(
1
j

)
− 4

3 . (41)
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Therefore the logarithm of the left side of (39) satisfies

ln

(
n

j

)
+ j ln(p) + (n− j) ln(1− p) > j ln

(
pn
j

)
+ (n− j) ln

(
(1−p)n
n−j

)
+ 1

2 ln
(
1
j

)
− 4

3 (42)

Focusing attention on the first two terms on the right side of (42), we may perform the following manipula-
tion making use of the identity ln

(
1
x

)
= − ln(x) ≥ 1− x, which holds for all x > 0.

j ln
(
pn
j

)
+ (n− j) ln

(
(1−p)n
n−j

)
= (j − pn) ln

(
pn
j

)
+ (pn) ln

(
pn
j

)
+

(pn− j) ln
(
(1−p)n
n−j

)
+ (n− pn) ln

(
(1−p)n
n−j

)
≥ (j − pn) ln

(
pn(n−j)
j(1−p)n)

)
+ pn

(
1− j

pn

)
+ (n− pn)

(
1− n−j

n−pn

)
= (j − pn) ln

(
pn−pj
j−pj

)
+ pn− j + n− pn− (n− j)

≥ (j − pn)
(

1− j−pj
pn−pj

)
= −(j − pn)2

p(n− j)
. (43)

Combining (43) with (42), we obtain

ln

(
n

j

)
+ j ln(p) + (n− j) ln(1− p) > − (j−pn)2

p(n−j) −
1
2 ln(j)− 4

3

> −2(j−pn)2
pn − 1

2 ln(j)− 4
3 , (44)

where the second inequality follows because n − j ≥ n
2 . Exponentiating both sides of (44) and using the

fact that e4/3 < 4, we obtain the inequality (39) stated in the lemma.
For the second part of the lemma, let ` = bpnc. The expression

(
n
`

)
p`(1 − p)n−` is the probability of

observing ` heads when tossing a bias-p coin n times. Using the trivial fact that this probability is at most
1, we obtain the bound(

n

j

)
pj(1− p)n−j ≤

(
n
j

)
pj(1− p)n−j(

n
`

)
p`(1− p)n−`

=
`!(n− `)!pj(1− p)n−j

j!(n− j)!p`(1− p)n−`

=

j∏
k=`+1

(n− k)p

k(1− p)
=

j∏
k=`+1

(
1− k − pn

k − pk

)
<

j∏
k=`+1

(
1− k − pn

j

)

< exp

(
−1

j

j∑
k=`+1

(k − pn)

)
≤ exp

(
− 1

2j
[(j − pn)2 − 2]

)
which confirms (40).

Lemma A.3. Let x1, x2, . . . be any sequence of numbers and for each integer j > 0 let yj = 1
j

∑j
k=1 xk.

Then yj+1 − yj = 1
j+1(xj+1 − yj). In particular, yj+1 > yj if and only if xj+1 > yj .

31



Proof. The lemma follows from a simple calculation.

yj+1 − yj =

(
1

j + 1

j+1∑
k=1

xk

)
−

(
1

j

j∑
k=1

xk

)

=
xj+1

j + 1
−
(

1

j
− 1

j + 1

) j∑
k=1

xk

=
1

j + 1

(
xj+1 −

1

j

j∑
k=1

xk

)
=

1

j + 1
(xj+1 − yj) .

Proposition A.1. For a given n and p, if the value j∗ = j∗(n, p) defined by (6) satisfies j∗ ≤ n/2 then it
satisfies

j∗ > p(n− 1) +
1

2

√
p(n− 1) ln+

(
p(n−1)

16

)
,

where the notation ln+(x) is defined to be equivalent to max{0, ln(x)}.

Proof. We will be applying Lemma A.3 to the sequence xj =
(
n−1
j−1
)
pj−1(1 − p)n−j and its associated

sequence of averages, yj = 1
j

∑j
k=1 xk. Note that j∗ = j∗(n, p) defined by (6) is equal to arg maxj{yj}.

The sequence xk is increasing for k < pn, as can be seen from the calculation

xk+1

xk
=

(
n−1
k

)
pk(1− p)n−k−1(

n−1
k−1
)
pk−1(1− p)n−k

=

(
p

1− p

)(
(n− 1)!

k!(n− 1− k)!

)(
(k − 1)!(n− k)!

(n− 1)!

)
=

p

1− p
· n− k

k
=
pn− pk
k − pk

.

Thus, when j < pn, we have that xj+1 is greater than each of x1, . . . , xj hence also greater than their
average, yj . By Lemma A.3 this means that j∗ ≥ pn.

Now, by another application of Lemma A.3, the fact that yj∗+1 ≤ yj∗ implies that xj∗+1 ≤ yj∗ . Noting
that yj∗ ≤ 1

j∗ , and recalling our assumption that j∗ ≤ n/2, we may now apply the lower bound for xj∗+1

supplied by Lemma A.2 to derive

1

j∗
≥
(
n− 1

j∗

)
pj
∗
(1− p)n−1−j∗ > 1

4
·
√

1

j∗
· exp

(
−2(j∗ − p(n− 1))2

p(n− 1)

)
ln(j∗) < ln(4) + 1

2 ln(j∗) +
2(j∗ − p(n− 1))2

p(n− 1)[
1
2 ln(j∗)− ln(4)

]
p(n− 1) < 2(j∗ − p(n− 1))2

j∗ > p(n− 1) +
√

max{0,
[
1
4 ln(j∗)− ln(2)

]
}p(n− 1)

j∗ > p(n− 1) + 1
2

√
ln+(p(n− 1)/16)p(n− 1). (45)
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Lemma A.4. Suppose we are given an integer n, a real number p ∈ (0, 1), and an integer j such that
pn < j < n/2. If 2

j ≤
(
n
j

)
pj(1− p)n−j ≤ 1

j , then there exist absolute constants C0, C1 such that√
C0

j ln(j)
≤

n∑
k=j

pk(1− p)n−k ≤

√
C1

j ln(j)
. (46)

Proof. Recall from the proof of Proposition A.1 that if xk is defined by xk =
(
n
k

)
pk(1− p)n−k then

xk+1

xk
=
pn− pk
k − pk

= 1− k − pn
k − pk

(47)

The identity 2x ≥ − ln(1 − x) is valid for 0 ≤ x ≤ 3
4 . So when k − pn < 3

4(k − pk) we may apply this
identity to conclude

2
(
k−pn
k−pk

)
≥ lnxk − lnxk+1 (48)

In particular, for ` =
⌈
j +

√
j

ln(j)

⌉
we may sum the first inequality in (48) over k = j, j + 1, . . . , `− 1 to

obtain

lnxj − lnx` ≤ 2
`−1∑
k=j

k−pn
k−pk (49)

≤ 2

j − pj

`−1∑
k=j

(k − pn) (50)

=
2(j − pn)(`− j)

j − pj
+

2

j − pj

`−1∑
k=j

(k − j) (51)

<
2(j − pn)(`− j)

j − pj
+

(`− j)2

j − pj
. (52)

Our hypothesis that xj = Θ(1/j) implies that j − pn = Θ(
√
j ln(j)) as was shown earlier. Hence

(j − pn)(`− j) = Θ

(√
j ln(j) ·

√
j

ln(j)

)
= Θ(j)

while (` − j)2 = j
ln(j) . Combining these bounds, and noting that the hypotheses in the lemma statement

imply p ≤ 1/2 and hence 2
1−p = Θ(1), we find that

lnxj − lnx` = Θ(1),

i.e., x` = Θ(xj). The sequence xj , xj+1, . . . , x` is monotonically decreasing, and we have derived that
every term in this sequence is Θ(xj) = Θ(1/j), so we have shown that

xj + · · ·+ x` = Θ
(
`−j
j

)
= Θ

(√
1

j ln(j)

)
. (53)
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The binomial tail
∑

k>j

(
n
k

)
pk(1 − p)n−k is equal to xj + · · · + xn, so equation (53) implies the existence

of an absolute constant C0 such that√
C0

j ln(j)
≤
∑
k>j

(
n

k

)
pk(1− p)n−k, (54)

establishing the first half of the lemma.
For the second half of the lemma, i.e., the upper bound on the binomial tail, we return to (47) and apply

the identity − ln(1− x) ≥ x, which is valid for all x ≥ 0. Hence for k ≥ j,

lnxk − lnxk+1 ≥
k − pn
k − pk

≥ k − pn
2(j − pj)

. (55)

For any ` > j we may sum over k = j, . . . , `− 1 to conclude

lnxj − lnx` ≥
1

j − pj

`−1∑
k=j

(k − pn)

≥ 1

j − pj

`−1∑
k=j

(j − pn)

=
(`− j)(j − pn)

j − pj

lnx` ≤ lnxj −
(
j − pn
j − pj

)
(`− j).

Let s = j−pn
j−pj . We have

lnx` ≤ lnxj − s(`− j)
x` ≤ xj exp (−s(`− j))∑

`≥j
x` ≤ xj

∞∑
`=j

exp (−s(`− j))

< xj

[
1 +

∫ ∞
0

e−sx dx

]
= xj(1 + 1

s ). (56)

To finish, we estimate the terms appearing on the right side of (56). Recall xj = Θ(1/j). Our estimate
j − pn = Θ(

√
j ln(j)) combined with the fact that 1 − p ≥ 1

2 implies that s = Θ(
√

ln(j)/j). Therefore,
1 + 1

s = Θ(
√
j/ ln(j)) and

n∑
k=j

(
n

k

)
pk(1− p)n−k =

n∑
`=j

x` < xj(1 + 1
s ) = Θ

(
1

j
·

√
j

ln(j)

)
= Θ

(√
1

j ln(j)

)
,

which shows that the upper bound in (46) holds for a suitable choice of absolute constant C1.
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Lemma A.5. For a given total prize V and participation cost c, let ν = V/c and j = bν −
√
νc. Consider

a simple contest that splits the prize into j equal shares of size V/j. In the equilibrium of this contest, the
ex-ante participation rate is greater than 1

n−1(ν −
√

5ν ln(ν)).

Proof. Let p = 1
n−1(ν −

√
5ν ln(ν)). In Section 3 we saw that to prove the lemma, it is sufficient to prove

that

V

j

j∑
k=1

(
n− 1

k − 1

)
pk−1(1− p)n−k ≥ c

j∑
k=1

(
n− 1

k − 1

)
pk−1(1− p)n−k ≥ cj

V
=
j

ν
≤ 1−

√
1

ν

n∑
k=j+1

(
n− 1

k − 1

)
pk−1(1− p)n−k ≤

√
1

ν
. (57)

The left side is the probability of seeing at least j heads when observing n− 1 tosses of a coin with bias p.
Letting λ = p(n − 1) denote the expected number of heads and δ = j

λ − 1, the Chernoff bound (e.g. [24])
tells us that

n∑
k=j+1

(
n− 1

k − 1

)
pk−1(1− p)n−k ≤ e−δ2λ/3.

To obtain an upper bound on e−δ
2λ/3, we derive a lower bound on δ2λ as follows.

δλ = j − λ ≥ ν −
√
ν − 1− (ν −

√
5ν ln(ν)) =

√
5ν ln(ν)−

√
ν − 1

δ2λ =
(δλ)2

λ
>

(δλ)2

ν

=

(
δλ√
ν

)2

≥
(√

5 ln(ν)− 1− ν−1/2
)2

The expression on the last line is clearly asymptotic to 5 ln(ν) as ν → ∞, so for all sufficiently large ν

it exceeds 3
2 ln(ν). In fact, one can verify numerically that

(√
5 ln(ν)− 1− ν−1/2

)2
> 3

2 ln(ν) for all

ν ≥ 7. So, to prove the lemma, we divide into two cases. If ν < 7 then ν −
√

5ν ln(ν) < 0, so the lemma’s
conclusion holds vacuously. If ν ≥ 7 then δ2λ > 3

2 ln(ν), so

n∑
k=j+1

(
n− 1

k − 1

)
pk−1(1− p)n−k ≤ e−δ2λ/3 < e− ln(ν)/2 =

√
1

ν
,

which establishes (57) and thus completes the proof.

Using the foregoing lemmas, we now complete the proof of Proposition 3.3, part 3, which we restate
here for convenience.
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Proposition 3.3, part 3. Fix V, c, and let j∗,n denote the number of prizes offered by the optimal contest with
population size n. Let p∗,n denote the probability that an individual agent participates in the equilibrium of
that contest, and let λ∗,n = p∗,n ·n denote the expected number of participants in that equilibrium. Letting
ν = V/c, for any n > 2ν the values of λ∗,n and j∗,n satisfy

λ∗,n = ν −Θ(
√
ν log ν), j∗,n = ν −Θ(

√
ν/ log ν). (58)

Proof. We begin by deriving the upper and lower bounds on λ = λ∗,n. To obtain a lower bound, we use
Lemma A.5, which says that a simple contest with j = bν −

√
νc achieves participation rate greater than

1
n−1(ν −

√
5ν ln(ν)). The optimal participation rate p can be no less than this quantity, and consequently

λ = pn > p(n− 1) ≥ ν −
√

5ν ln(ν). (59)

Before deriving an upper bound on λ we make some observations which lead to a crude lower bound on
j∗ = j∗,n. Observe that a winner in the optimal contest receives V/j∗ and has participation cost c, so
individual rationality guarantees that V/j∗ ≥ c, which we rewrite as

j∗ ≤ V/c = ν. (60)

By assumption, ν ≤ n/2, so we may apply Proposition A.1 to derive

j∗ > λ+ 1
2

√
λ ln+(λ/16), (61)

where ln+(x) is shorthand for max{ln(x), 0}. Combining (61) with (60) we obtain

ν > λ+ 1
2

√
λ ln+(λ/16). (62)

When ν ≥ 100, the lower bound (59) implies that λ ≥ ν/2. Substituting this lower bound into (62) implies

λ <

{
ν − 1

2

√
ν
2 ln+

(
ν
32

)
if ν ≥ 100

100 otherwise
(63)

Combining (59) with (63) we obtain that λ = ν −Θ
(√

ν ln(ν)
)

as ν →∞.
As for estimating the number of prizes in the optimal contest, j∗, we begin by recalling from Proposi-

tion 3.1 that the participation rate p in the equilibrium of the optimal contestM satisfies cM(p) = c. When
M is a simple contest that splits the prize into j∗ equal shares of size j∗, we have

c = cM(p) =
V

j∗

j∗∑
k=1

(
n− 1

k − 1

)
pk−1(1− p)n−k

and therefore

j∗ =
V

c

j∗∑
k=1

(
n− 1

k − 1

)
pk−1(1− p)n−k = ν

1−
∑
k>j∗

(
n− 1

k − 1

)
pk−1(1− p)n−k

 . (64)
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This shows that obtaining an asymptotic estimate of ν − j∗ as a function of ν (as ν → ∞) is equivalent to
estimating the binomial tail

∑
k>j∗

(
n−1
k−1
)
pk−1(1− p)n−k in terms of ν. Lemma A.4 establishes that

∑
k>j∗

(
n− 1

k − 1

)
pk−1(1− p)n−k = Θ

(√
1

j∗ ln(j∗)

)
(65)

and substituting this estimate in (64) yields

j∗ = ν −Θ
(√

ν
j∗ ln(j∗)

)
. (66)

We have already shown above that for sufficiently large ν, λ = Θ(ν) and j∗ = Θ(λ) = Θ(ν). Thus,
j∗ ln(j∗) = Θ(ν ln(ν)), and we can substitute this estimate into (66) to derive j∗ = ν−Θ(

√
ν/ ln(ν)).

B Equilibrium Existence and Uniqueness

In this section we restate and prove three lemmas related to existence and uniqueness of symmetric equi-
libria in rank-order contests. Throughout this section we assume that the distribution F (q, c) is absolutely
continuous with respect to Lebesgue measure.

Lemma B.1. Any rank-order contestM has a symmetric mixed-strategy equilibrium.

Proof. The lemma essentially follows from Milgrom and Weber’s 1985 mixed equilibrium existence theo-
rem for games of incomplete information. Their theorem requires two hypotheses: equicontinuous payoffs
(R1) and absolutely continuous information (R2). The game induced by contestM is easily seen to satisfy
both of these hypotheses. R1 is satisfied because each player has only two actions (Proposition 1(a) of [20])
and R2 is satisfied because agents’ types are independent (Proposition 3(b) of [20]). The conclusion of their
theorem asserts that a mixed-strategy equilibrium exists and does not specify existence of a symmetric equi-
librium for symmetric games such as ours. However, the existence of a symmetric equilibrium is established
by applying Glicksberg’s Fixed Point Theorem [12] in exactly the same way that it is applied in the proof
of Theorem 1 of [20], except that the fixed point theorem is applied to the point-to-convex-set mapping that
maps every mixed strategy µ (of a single agent) to that agent’s best response set when responding to the
symmetric strategy profile in which all agents play x.

Lemma B.2. If µ is any symmetric mixed strategy equilibrium of a rank-order contestM then there exists
a symmetric pure strategy equilibrium π that is “almost equal” to µ in the following sense: there exists a
measure-zero set of types, T , such that for all (q, c) 6∈ T , when π′ is randomly sampled from µ, the event
π′(q, c) 6= π(q, c) has probability zero.

Proof. Define Fµ to be the cumulative distribution function of the random variable q · π′(q, c) when (q, c)
is drawn from F and π′ is drawn from µ. As in the proof of Lemma 4.1, an agent of type (q, c) facing n− 1
opponents all of whom are playing mixed strategy µ receives an expected prize equal to cM(1−Fµ(q)) if she
participates. If c > cM(1 − Fµ(q)) then the agent strictly prefers non-participation to participation, hence
π′(q, c) = 0 for almost every π′ in µ. If c < cM(1 − Fµ(q)) then the agent strictly prefers participation
to non-participation, hence π′(q, c) = 1 for almost every π′ in µ. This verifies that the lemma’s conclusion
holds with

π(q, c) =

{
1 if c < cM(1− Fµ(q))

0 if c ≥ cM(1− Fµ(q))
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and T = {(q, cM(1−Fµ(q))}. This set T has measure zero because it intersects each vertical line {q}×R
in a single point.

Lemma B.3. IfM is any rank-order contest and π, π′ are two of its symmetric pure strategy equilibria then
{(q, c) | π(q, c) 6= π′(q, c)} has measure zero.

Proof. Since π, π′ are both equilibria, they are also both sub-equilibria. Let Fπ, Fπ′ denote the cumulative
distribution functions of q · π(q, c) and q · π′(q, c), respectively. Lemma 4.1 applied to the sub-equilibrium
π implies Fπ(x) ≥ Fπ′(x) for all x. Applying the same lemma to the sub-equilibrium π′ yields the reverse
inequality. Hence Fπ = Fπ′ . Reasoning now as in the proof of Lemma ??, we may conclude that π(q, c) =
π′(q, c) unless c = cM(1− Fπ(q)).

C Proofs from Section 4.2

This section contains the proofs comparing the expectation of the maximum quality elicited by the winner-
take-all mechanism to that of the optimal mechanism. Recall that the overall structure of the proof divides
the participants in the optimal mechanism into two subpopulations—those with cost greater than V

2 and
those with cost less than or equal to V

2 . The following lemmas treat those sub-populations separately.

Lemma C.1. WTA ≥ 1
2E[max{qi | i ∈ E∗; ci ≤ V

2 }].

Proof. First, note that E[max{qi | i ∈ E∗; ci ≤ V
2 }] ≤ E[max{qi | ci ≤ V

2 }], so it is sufficient to show
that WTA ≥ E[max{qi | ci ≤ V

2 }]. This allows us to reason only about strategic behavior in the winner-
take-all mechanism, instead of needing to also understand participation choices in the optimal mechanism.
We will use the sub-equilibrium lemma to relate equilibrium outcomes inMWTA to the expected output in
a particular sub-equilibrium, identified below, that can be compared against E[max{qi | ci ≤ V

2 }].
Consider n − 1 random draws of (qi, ci) from F , and let µ denote the median of the random variable

max{qi | ci ≤ V
2 }. That is, µ is such that:

Pr(max{qi | ci ≤
V

2
} > µ) = Pr(max{qi | ci ≤

V

2
} ≤ µ). (67)

Consider the strategy profile πS1 where an agent i participates in MWTA if and only if qi ≥ µ and
ci ≤ V

2 . We claim that πS1 constitutes a sub-equilibrium ofMWTA: by definition of µ, if i participates when
playing πS1 , her expected payoff inMWTA is

E[ui] = V · Pr(qi ≥ max
j 6=i

qj | j ∈ S(πS1 ))− c ≥ V · 1

2
− V

2
≥ 0,

so that it is individually rational for each agent to participate if all other agents play according to πS1 .
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We now analyze the expected outcome in this sub-equilibrium πS1 ofMWTA:

E[max
n
{qi | qi ≥ µ; ci ≤ V

2 }] =

∫ ∞
0

Pr(max{qi | qi ≥ µ; ci ≤ V
2 } > t)dt

=

∫ µ

0
Pr(∃qi | qi ≥ µ; ci ≤ V

2 })dt+

∫ ∞
µ

Pr(max{qi |ci ≤ V
2 } > t)dt

= µPr(max{qi | ci ≤ V
2 } ≥ µ) +

∫ ∞
µ

Pr(max{qi |ci ≤ V
2 } > t)dt

≥ µ · 1

2
+

1

2

∫ ∞
µ

Pr(max{qi |ci ≤ V
2 } > t)dt

=
1

2

(∫ µ

0
1 · dt+

∫ ∞
µ

Pr(max{qi |ci ≤ V
2 } > t)dt

)
≥ 1

2

(∫ µ

0
Pr(max{qi |ci ≤ V

2 } > t)dt+

∫ ∞
µ

Pr(max{qi |ci ≤ V
2 } > t)dt

)
=

1

2
Emax{qi |ci ≤ V

2 }],

where the inequality in the fourth line follows from the definition of µ in (67), and because µ depends on
the max of n− 1 random draws of qi while the max here is over n draws from qi.

By the corollary to the sub-equilibrium lemma (Corollary 4.1), the expected maximum output in any
equilibrium ofMWTA is at least as large as the expected maximum output in a sub-equilibrium, and there-
fore specifically in the sub-equilibrium πS1 . Combining this with the inequality just derived, we have

WTA ≥ E[max
n
{qi | qi ≥ µ; ci ≤ V

2 }] ≥
1

2
E[max

n
{qi |ci ≤ V

2 }] ≥
1

2
E[max{qi | i ∈ E∗; ci ≤ V

2 }],

which proves the lemma.

Lemma C.2. WTA ≥ E[max{qi | i ∈ E∗; ci > V
2 }].

Proof. To prove this inequality, we use the sub-equilibrium lemma (Lemma 4.1) again, albeit with a different
strategy profile. Consider the equilibrium πE(M∗) of an optimal mechanism M∗, and let E∗ denote the
set of participants in M∗ when agents play according to πE(M∗) as before. Consider a strategy πS2 for
MWTA where an agent participates if and only if she has cost c > V

2 , and would also participate according
to πE(M∗). We claim that πS2 is a sub-equilibrium of the winner-take-all mechanismMWTA, i.e., that the
strategy profile where all agents in S(πS2 ) = {i | i ∈ E∗; ci > V

2 } participate and all remaining agents do
not participate leads to non-negative payoffs for all agents in the winner-take-all mechanism.

To show this, consider the following lottery over simple mechanisms defined by the rewards in the
mechanismM∗(v1, . . . , vn): the lottery runs the simple contest which awards equal prizes of Vj each to the
top j contestants with probability

Pr(j) = j
V (vj − vj+1).

Note that (i)
∑n

j=1 Pr(j) = 1 since
∑n

j=1 vj = V (this is derived in Equation (4) in §3 for any feasible
mechanism) so that the distribution Pr(j) is a valid probability distribution, and (ii) for any draw of the
n values of (qi, ci), the expected payoff to the agent with the jth highest quality is exactly equal to vj in
this lottery over simple mechanisms. That is, this lottery over simple mechanisms is payoff-equivalent (in
expectation) for all agents to the optimal mechanismM∗(v1, . . . , vn).
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The expected payoff of an agent in E∗ (i.e., a participating agent) in the optimal mechanism
M∗(v1, . . . , vn) can therefore be written as

E[ui] =
n∑
j=1

j(vj − vj+1)

V

(
Pr(i belongs to the top j agents in E∗) · Vj − ci

)
.

Since πE is an equilibrium ofM∗, every agent who participates must receive non-negative expected payoff.
Specifically, consider the agents in E∗ with cost greater than V/2. All but the term corresponding to j = 1
in the summation are negative for such an agent, since V

j ≤
V
2 < ci for j ≥ 2. So the term corresponding

to j = 1 must be positive. But for j = 1, the expression
[
Pr(i belongs to the top j agents in E∗) · Vj − ci

]
is exactly the expected payoff of an agent in E∗ in the winner-take-all mechanismMWTA, if all agents in
E∗ participate and all agents not in E∗ do not. Since the expected payoff to this agent when only agents in
E∗ ∩ {i | ci > V

2 } participate can only be larger than this value (she is more likely to be the highest-quality
agent when competing with a smaller subset of agents), this means that the strategy profile πS2 where all
agents in E∗ with ci > V

2 participate, and the remaining agents do not, is a sub-equilibrium of the winner-
take-all mechanism.

Applying Corollary 4.1 to this strategy profile πS2 , we have WTA ≥ E[max{qi | i ∈ E∗; ci > V
2 }],

which proves the lemma.
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