
Auctions with Revenue Guarantees
for Sponsored Search?
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Abstract. We consider the problem of designing auctions with worst
case revenue guarantees for sponsored search. This problem differs from
previous work because of ad dependent clickthrough rates which lead to
two natural posted-price benchmarks. In one benchmark, the winning
advertisers are charged the same price per click, and in the other, the
product of the price per click and the advertiser clickability (which can
be thought of as the probability an advertisement is clicked if it has
been seen) is the same for all winning advertisers. We adapt the random
sampling auction from [9] to the sponsored search setting and improve
the analysis from [1], to show a low competitive ratio for two truthful
auctions, each with respect to one of the two described benchmarks.
However, the two posted price benchmarks (and therefore the revenue
guarantees from the corresponding random sampling auctions) can each
be larger than the other; further, which is the larger cannot be deter-
mined without knowing the private values of the advertisers. We design
a new auction, that incorporates these two random sampling auctions,
with the following property: the auction has a Nash equilibrium; and
every equilibrium has revenue at least the larger of the revenues raised
by running each of the two auctions individually (assuming bidders bid
truthfully when doing so is a utility maximizing strategy). Finally, we
perform simulations which indicate that the revenue from our auction
outperforms that from the VCG auction in less competitive markets.

1 Introduction

We address the problem of designing auctions with revenue guarantees in the
sponsored search setting. This problem is crucial for search engines, most of
which are publicly held companies that rely heavily on sponsored search for
revenue. Revenue considerations in sponsored search auctions have been receiv-
ing recent attention [20, 14, 7]. The efficient auction in this setting, namely the
VCG mechanism [22, 5, 10, 6, 16], and the current mechanism used for sponsored
search, namely GSP [6, 21] (of which the VCG outcome is an equilibrium [6]), do
not provide revenue guarantees. In fact, the revenue from VCG can be arbitrarily
bad compared to the optimal revenue with full knowledge of bidder valuations,
as can be demonstrated by simple examples. Simulations support the intuition
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that revenue from the VCG outcome can be particularly small in less competi-
tive yet realistic markets, where there are not many bidders with similar values
for the keyword.

Can we ensure revenue guarantees even in markets with little competition?
Our metric for the performance of an auction is to compare its revenue against
the revenue raised by an optimal omniscient posted price auction, i.e., the auction
that raises the optimal revenue if the auctioneer knows the true valuations of
all the bidders, but is restricted to charging every winner the same price. The
competitive ratio of the auction is defined as the worst case ratio, over all possible
inputs, between the revenue of an optimal omniscient posted price auction and
the revenue of the proposed auction.

Auctions with worst case revenue guarantees, against such omniscient posted
price benchmarks, have been studied in the literature (see §1.1). The main chal-
lenge in applying competitive analysis to our setting is to incorporate the ex-
istence of multiple posted price benchmarks arising from the structure of click-
through rates, which we model as separable into an ad-clickability and a slot-
clickability (see §2 for a formal description of the model). While the basic com-
ponent of our mechanism is a random sampling auction as in [9], there are now
two natural posted-price benchmarks depending on whether or not advertisers
are discounted for their clickabilities: the optimal omniscient single-price revenue
where all winning advertisers must be charged the same price per click, and the
optimal omniscient ’weighted-price’ revenue, where all winning advertisers are
charged the same price per sighting, i.e., the product of price per click and ad-
clickability is the same for all winning advertisers. These two benchmarks are
the natural posted-price analogs of two charging schemes that have been used
in practice: charge an advertiser the bid-per-click of the bidder below him, or
discount the bidder proportional to his ad-clickability, i.e., divide the bid per
click of the advertiser below by the ad-clickability of the bidder being charged.

The existence of these two benchmarks leads to the problem of designing an
auction with competitive guarantees against both benchmarks: as we will show
in §3, either of these two benchmarks can be larger than the other (the optimal
weighted price revenue can be as small as a factor O(log k) of the optimal single
price revenue, and the optimal single price revenue can be as small as a factor
1/k of the optimal weighted price revenue, where k is the number of slots). In
addition, which benchmark is larger cannot be determined without knowing the
private values of the bidders.

Results: The main contribution of our paper is a mechanism with a Nash
equilibrium whose revenue is competitive against both the single price and
weighted price benchmarks. To do this, we first adapt the random sampling
auction to obtain two auctions, each with high revenue guarantees against one
of the two benchmarks. The contribution here is improving an existing analysis
of the random sampling auction by a factor 2, in addition to an analysis of the
random sampling approach in the sponsored setting, accounting for advertiser
and slot clickabilities.



The two random sampling auctions are then used as building blocks for a
single auction with Nash equilibria that raises revenue at least as large as that
raised by each of the two random sampling auctions independently; further, if
bidders bid their true value whenever that belongs to the set of utility maximizing
strategies, every Nash equilibrium of the auction raises this high revenue. One
significant challenge in designing an auction competitive against both bench-
marks is that the same bidders participate in both auctions and can have higher
utility in one or the other. Despite the presence of such bidders, we find that
there is a way to always raise revenue competitive with both benchmarks. While
the auction is no longer truthful, every Nash equilibrium of the auction has this
competitive property.

We also perform numerical simulations to compare the performance of our
auction against that of the VCG auction. In crowded markets with a large
amount of competition, both auctions achieve a large fraction of the optimal
revenue, and the VCG auction obtains more revenue than the competitive auc-
tion. However, as the market becomes less competitive and both auctions achieve
a smaller fraction of the optimal revenue, the competitive auction overtakes the
VCG auction. Our findings that the competitive auction produces more revenue
than the VCG alternative in more challenging situations (i.e., less competitive
markets) is in keeping with our analytical framework, as competitive auctions
are designed to perform well in worst case settings.

We note that although our work is motivated by sponsored search, it is also
applicable in other settings where the probability of a successful event is the
product of the probability of two separate events: one event based on factors that
depend on the allocation, and the other event based on bidder dependent factors.
For example, an airport manger may want to auction off a set of vendor sites.
One event is that a potential customer walks past a site, and this event depends
on the particular location of the site within the airport (i.e. the allocation). The
other event is that the potential customer walking past the site will actually
enter the site, and this event depends on factors related to the bidder occupying
the site such as attractiveness of the site and brand familiarity.

1.1 Related work

Incentive compatible auctions for allocation and pricing in the keyword search
setting have been considered previously. In [6], the authors show that any equi-
librium using generalized second pricing (i.e., where an advertiser is charged
the next highest bid), has revenue at least that of the VCG [22, 5, 10] auction.
Another approach [2], gives a truthful pricing mechanism when the allocation of
slots is externally specified.

There has also been previous work on auctions that maximize revenue. The
classical work of Myerson [18, 16] on optimal auction design shows how to design
an auction that maximizes the expected revenue of the seller when the bidder
values are drawn from a (known) continuous distribution. The expectation of
revenue is over this known distribution. In contrast, we are interested in maxi-



mizing revenue in the worst case scenario, i.e., for every possible vector of bid
values.

There has been recent work concerned with revenue in the context of spon-
sored search. Roughgarden and Sundararajan show that in the classical Bayesian
setting studied by Myerson [18], the VCG mechanism can be made to obtain
high revenue by adding enough bidders, i.e., by making the market sufficiently
competitive. Edelman and Schwarz [7] explore setting reserve prices to increase
revenues. The work in [14] studies how to use ad-clickabilities in ranking and
pricing to improve revenue. All of these differ from our work in that they do not
provide worst case revenue guarantees over all realizations of bidder values.

In terms of competitive analysis for auctions, the random sampling approach
was first proposed in [9], and has since been used in several problems and con-
texts, see for example [15, 4, 11]. Finally, there are several papers that combine
multiple auctions into a single auction [3, 17, 1]. In [3], the generalized auction
uses two successive auctions to create an auction that is truthful while main-
taining the competitive ratio. Unfortunately, this composition does not apply in
our context.

2 Model

Our model is the following. There are n bidders competing for k slots. Each
bidder has a private valuation for a click, vi. We order bidders by value, i.e.,
v1 ≥ . . . ≥ vn. Every slot-bidder pair has a clickthrough rate cij associated with
it, which is the probability with which the advertisement of bidder i in slot j is
clicked. We assume, as is common in the literature (see, for instance [6, 2]), that
this clickthrough rate is separable, i.e.,

cij = µiθj ,

where we refer to µi as the ad-clickability of bidder i, and θj as the slot-
clickability of slot j. The slot-clickability can be thought of as the probability
that the user will look at the displayed advertisement (the higher the slot place-
ment, the more likely it is that the user will see the ad). The ad-clickability can
be thought of as the bidder dependent probability that the advertisement will
be clicked, given that it has been seen.

The separability assumption is equivalent to saying that the events of clicking
on a particular ad (regardless of which slot it is displayed in) and a particular
slot (regardless of which ad is displayed in it) are independent. Although this
assumption is not always entirely accurate, analysis shows it is often reasonable
[23], and it has been widely adopted in the literature [2, 6, 19, 13]. We assume
that the ad-clickabilities µi and slot-clickabilities θi are public knowledge. For
our results in §4, we only need µi and θi to be known to the seller, which is a
realistic assumption.



We assume that the clickabilities of the slots decrease with position, i.e.,
θ1 ≥ θ2 ≥ . . . ≥ θk. We define

Θi =
i∑

j=1

θj , (1)

i.e., Θi is the sum of the clickabilities of the top i slots.
We denote by bi the bid of bidder i, and the price charged to bidder i in

an allocation by pi. The auction mechanism takes the bids bi, and computes an
allocation x and pricing p, where xi = j if the bidder is assigned to slot j, and
is 0 if bidder i is not assigned a slot, and pi is the price that bidder i pays per
click he receives in his slot.

For a bidder i, we define
wi = viµi,

which is the expected value to the bidder from a slot with clickability θj = 1.
By the separability assumption, the expected value to bidder i in a slot with
clickability θj is wiθj .

3 Optimum Pricing Solutions

The previous work on digital goods auctions uses as a benchmark the optimal
multi-price and optimal single price revenues [11, 9, 1]. In this section, we extend
these concepts to our problem, introducing a new benchmark, optimal weighted
price revenue, and bound these benchmarks against each other. While current
auctions do not sell clicks in different slots at the same price, a single price (or
single weighted price) per click is still meaningful when interpreted as a common
reserve price for all slots (note that an advertiser’s net payment still depends on
the clickthrough rate in the assigned slot even if the price-per-click is the same
in all slots).

Definition 1. Multi-price optimal (OPTMP ):
The multi-price optimal revenue, OPTMP , is the maximum possible revenue that
can be extracted with k slots, when the true values of all bidders are known. Let
wi(j) denote the jth largest value in w, then

OPTMP =
min(n,k)∑
j=1

wi(j)θj . (2)

We denote by OM the set of bidders that are assigned slots in this allocation.

Definition 2. Single price optimal (OPTSP ):
The single price optimal revenue OPTSP is the maximum revenue that can be
extracted with k slots, when the true values of all bidders are known, and every
bidder assigned to a slot must be charged the same price per click. Here p ≤ k
items are sold at a single price vp, where the single price is chosen to maximize



revenue. Let µpi(j) be the jth largest µi of bidders with values vi ≥ vp. Then,
OPTSP is computed as

OPTSP = max
p=1,...,min(n,k)

vp

p∑
j=1

µpi(j)θj . (3)

We denote the set of bidders contributing positive revenue to OPTSP as OS.

Unlike settings where there are no ad-clickabilities, the optimal single price
here is not necessarily limited to one of the k values v1, . . . , vk – it can be any of
the values v1, . . . , vn. (If vi ≥ vj implies µi ≥ µj , however, vp is clearly greater
than or equal to vk).

Definition 3. Weighted price optimal (OPTWP ): The weighted price optimal
revenue OPTWP is the maximum revenue that can be extracted with k slots,
when the true values of all bidders are known, and every bidder assigned to a
slot is charged a price inversely proportional to his clickability, i.e., such that
piµi is constant. OPTWP is computed as follows: sort the w in decreasing order,
and choose an index r ≤ k that maximizes the revenue when every bidder with
wi ≥ wr contributes wr to the revenue, i.e.,

OPTWP = wrΘr = max
j=1,...,min(k,n)

wi(j)Θj . (4)

Every bidder who is allocated a slot pays a price

pi =
wr
µi
≤ wi
µi

= vi.

We denote the set of bidders contributing positive revenue to OPTWP as OW .
(Note that when all ad-clickabilities µi are equal, the weighted price and single
price revenues are exactly the same.)

We will sometimes useOPTWP (S) andOPTSP (S) to denote the optimal weighted
price and single price revenues for a set of bidders S.

3.1 Relating OPTSP and OPTW P

Either OPTSP or OPTWP can be larger, depending on the values of (v, µ) and
θ, as the following example shows. Suppose θi = 1 for all slots, and bidders
clickabilities are µ1 = 12, µ2 = 6, µ3 = 4, µ4 = 3. If the bidders valuations
are v = (1, 1, 1, 1), then OPTSP = 25, and OPTWP = 12. However if the
values are v = (1/12, 1/6, 1/4, 1/3), then OPTSP = 13/6 which is less than
OPTWP = 4. Notice that which of OPTSP and OPTWP has larger revenue
cannot be determined without knowing the true valuations of the bidders.

We now show some theoretical results about how OPTSP and OPTWP are
related.



Theorem 1. The optimal single price and weighted price revenue are related as
follows:

1
k
OPTWP ≤ OPTSP ≤ HkOPTWP .

Proof. The first inequality is easy:

OPTSP ≥ vrµrθ1 ≥
1
k
OPTWP ,

where r is the index chosen by OPTWP as before. To show that this bound is
tight, consider the following example. Suppose there are n = k bidders, with
vj = 1/cj−1, and µj = 1/vj = cj−1, where c is a large positive constant. All slots
have equal clickability θj = 1. Then OPTMP = k.

For any choice vi of single price, the revenue is

OPTSP = max
i

1
ci−1

i∑
j=1

cj−1 =
ci − 1

ci−1(c− 1)
,

which approaches 1 for large c.
To show the second inequality, consider the set of bidders in OS each of whom

pays the optimal single price vp. Consider a modified set of bidders ÕS obtained
by changing the values of bidders in OS to ṽi = vp. The value of OPTSP for this
set of bidders is unchanged. Now consider the optimal weighted price revenue
that we can obtain from ÕW , which is certainly less than or equal to OPTWP :
first, since ṽi ≤ vi, w̃i is less than or equal to wi, so the optimal weighted price
revenue for the bidders in ÕW is less than or equal to that for the bidders in
OS . Next, we are considering a subset of the set of all bidders used to compute
OPTWP , so the revenue cannot increase.

Let r̃ be the number of bidders in the optimal weighted price solution for
this modified subset of bidders, and let ÕPTWP = wr̃Θr̃ denote this revenue.
Then, for all bidders in ÕP ,

Θ
r̃
w
r̃
≥ Θiw̃i,

that is,

µi ≤
Θr̃
Θi
µr̃.

So

OPTSP = vp
∑

i(j)∈OS

µi(j)θj

≤ vp
∑

i(j)∈OS

µr̃
Θr̃
Θj

θj

≤ Hp ÕPTWP

≤ Hk OPTWP ,



where the inequality in the third line follows from the fact that jθj ≤
∑j
i=1 θi,

since the θs are decreasing, and Hk is the harmonic sum.
This bound is tight, as shown by the following example. Let there be n = k

bidders each with value vi = 1, clickabity µi = kµ/i for 1 ≤ i ≤ k− 1, and µk =
µ + ε. Then OPTMP ≈ kµ log k = OPTSP . However, OPTWP = max iwj(i) =
k(µ+ ε).

This theorem showed that either of OPTSP or OPTWP can be larger than
the other; OPTSP can be smaller by a factor k, while it can only be larger
by a factor O(log k) than OPTWP . While it might still be tempting to choose
the weighted price revenue as our benchmark, the next result shows that in the
important case when bidders’ clickabilities decrease with their values, OPTSP is
always greater than or equal to OPTWP .

Theorem 2. Suppose clickabilities decrease with values, i.e., vi ≥ vj implies
µi ≥ µj. Then, the optimal single price revenue is greater than or equal to the
optimal weighted price revenue.

Proof. Let p be the optimal index in the single price auction; then, since the µ
are decreasing with v (i.e., µi(j) = µj), the revenue is

OPTSP = vp(
p∑
i=1

µiθi).

In the weighted price auction, we order the bidders by wi = viµi, which, by
assumption, is the same as the ordering of the v’s. Let r be the optimal index
picked by the weighted price auction. Then, we extract revenue wrθj = vrµrθj
from the bidder assigned to slot j. So the revenue is

OPTWP = vrµr(
r∑
j=1

θj)

≤ vr(
r∑
j=1

µjθj)

≤ OPTSP ,

where the first inequality follows since µi ≥ µr for i ≤ r, and the second follows
from the definition of single price optimum.

Note that it cannot be argued that if v1 ≥ . . . ≥ vn and µ1 ≤ . . . ≤ µn, then
OPTWP is always larger than OPTSP , since the ordering of bidders according
to w and the ordering according to v can be unrelated.

Finally we show that OPTSP and OPTWP are close to each other when the
clickbilities of winning bidders are not very different.

Theorem 3. Let µmax and µmin be the largest and smallest clickabilities of
bidders in OS ∪OW .Then

µmin

µmax
OPTWP ≤ OPTSP ≤

µmax

µmin
OPTWP .



Proof. To show the first inequality, consider the set of bidders in OW , i.e., the
bidders who contribute positive revenue to

OPTWP = wr

r∑
i=1

θi.

The smallest value of bidders in OW is at least wr
µmax

. Therefore, by definition
of OPTSP ,

OPTSP ≥
wr
µmax

∑
i∈OW

µi(j)θi

≥ wr
µmax

∑
i∈OW

µminθi

=
µmin

µmax
(
∑
i∈OW

wrθi),

≥ µmin

µmax
OPTWP .

Next we show the second inequality.

OPTSP = vp
∑
i∈OS

µi(j)θj ≤
µmax

µmin
(vpµmin

p∑
i=1

θi)

≤ µmax

µmin
OPTWP ,

where the last inequality uses the fact that for every bidder in OS ,

wi = viµi ≥ vpµmin,

since by defintion, vp is the smallest value of bidders in OS ,and µmin is less than
or equal to the smallest clickability of these bidders.

3.2 Bounding Against OPTMP

We now relate OPTWP and OPTSP to OPTMP . Note that while the worst case
bounds for both benchmarks are large, the results in Theorem 3 and 4 show
that when the top k bidders’ values for slots is not very widely different, these
benchmarks are quite close to OPTMP .

Theorem 4. OPTMP ≤ kOPTSP , and this bound is tight.

Proof. From (2) and (3),

OPTSP ≥ wi(1)θ1 ≥
1
k

k∑
j=1

wi(j)θj ,

since the θjs are decreasing. The same example that shows that OPTWP can
be as large as k times OPTSP also shows that this inequality is tight, since
OPTWP = OPTMP for that example.



However, when clickthrough rates are bidder independent (i.e., µi = 1), the
optimal single-price revenue can be no smaller than a factor O(log k) of the
optimal multi-price revenue. This follows directly from the next result since in
this case OPTWP = OPTSP .

Theorem 5. OPTMP ≤ HkOPTWP , where Hk = 1 + 1
2 + . . .+ 1

k . This bound
is tight.

Proof. Let r = |OW | be the number of slots sold by OPTWP . From (4) and (1),
for j = 1, . . . , k,

wi(j) ≤ wr
Θr
Θj

.

So the optimal multi-price revenue, OPTMP , is

k∑
j=1

wi(j)θj ≤
k∑
j=1

θjwr
Θr
Θj

= wrΘr

k∑
j=1

θj
Θj

≤ OPTWP

k∑
j=1

1
j
,

where the last inequality follows from the fact that jθj ≤
∑j
i=1 θi, since the θs

are decreasing. When all θ and all µ are equal to 1 and vi = 1
i , all inequalities

are tight, so this bound is tight as well.

While these theorems show that OPTSP and OPTWP can be quite small
compared to the multiprice optimal, when bidders’ valuations are more consis-
tent, OPTSP and OPTWP are quite close to OPTMP , as shown in the following
theorems.

Theorem 6. Let vmax be the largest, and vmin be the smallest value of the bid-
ders contributing to OPTMP . Then OPTMP ≤ (vmax/vmin)OPTSP .

Proof. We have, with wi(j) = vi(j)µi(j),

OPTMP =
k∑
j=1

wi(j)θj

=
1

vmin

k∑
j=1

vminvi(j)µi(j)θj

≤ vmax

vmin

vmin

k∑
j=1

µi(j)θj


≤ vmax

vmin
OPTSP ,



where the last inequality follows from the definition of OPTSP , since every bidder
in OM has value greater than or equal to vmin.

Note here that vmax and vmin are values from OPTMP , and need not be the
largest and smallest values from the entire set of bidders (i.e., not necessarily v1

and vn).
A nearly identical argument can be used to show

Theorem 7. Let wmax be the largest, and wmin be the smallest revenues of the
bidders contributing to OPTMP . Then OPTMP ≤ (wmax/wmin)OPTWP .

The OPTWP benchmark, that weights prices proportional to ad-clickabilities,
is attractive for several reasons. It seems natural to give a discount to bidders
that bring the auction most value; this is the prominent framework in both
theory (VCG, GSP, and the laddered auction) and in practice (Google and soon
Yahoo! charge bidders proportional to ad-clickabilities). In addition, Theorems
4 and 5 show that OPTMP is at most Hk times as large as OPTWP , as opposed
to k times as large as OPTSP . We also point out that when |OS | = |OW |, then
the competitive ratio against OPTSP is worse than the competitive ratio against
OPTWP .

But a further examination of Theorem 2 indicates that, in fact, weighted
prices are not clearly superior to charging a single price. As we would anticipate,
in practice it is often the case that value and ad-clickability are correlated, since
the ultimate goal is to match the searcher with a relevant advertisement. We
can think of the ad-clickability and the value as both being increasing functions
of the quality of the searcher-advertisement match. Since in this case we always
have OPTSP ≥ OPTWP , it is quite common for single prices to provide better
revenue than weighted prices.

4 Auctions Competitive Against A Single Benchmark

In this section we describe two truthful auctions that are competitive against the
optimal single price and weighted price revenues. The auctions in this section are
based on the random sampling auction from [9]. However, extending previous
analyses gives us a competitive ratio that asymptotically approaches 2 against
the optimum weighted price revenue and 4 against the optimum single price
revenue. First we improve upon the analysis in [1] by a factor 2, to obtain a
competitive ratio that also asymptotically approaches 2 against the optimum
single price revenue. Next, we incorporate decreasing slot-clickabilities into our
analysis to further improve our guarantees to approach near optimal, as the
steepness in clickthrough rates increases.

The two competitive auctions use versions of ProfitExtract from [9] that
are described in the Appendix. Given a set of bidders S and a revenue R,
ProfitExtractRWP is an incentive compatible auction that extracts revenue R
using weighted pricing, if OPTWP (S) ≥ R. Given a set of bidders S and a
revenue R, ProfitExtractRSP is an incentive compatible auction that extracts
revenue R using single pricing, when possible.



Unlike ProfitExtractWP , this auction assigns higher slots to bidders whose
ads have higher clickabilities.

4.1 Mechanism competitive with OPTW P

Now we give an auction mechanism MWP which has a low competitive ratio (less
than or equal to 4 and asymptotically optimal as a function of bidder dominance
and slot clickabilities) with respect to OPTWP .

Mechanism MWP

1. Partition bidders independently and uniformly at random into two subsets
S1 and S2.

2. Compute R1 = OPTWP (S1)− ε, and R2 = OPTWP (S2) + ε.
3. Run ProfitExtractR1

WP on the bidders in S2, and
ProfitExtractR2

WP with the bidders in S1.

We assume that revenues are calculated to some finite precision, and we
choose ε > 0 to be small compared with this precision.

A straightforward application of the analysis from [9] provides at best a
guarantee that asymptotically approaches two, because the revenue extracted is
the lesser of the random division of contributions to the optimum. Our setting has
a unique structure which allows us to improve upon this guarantee: clickthrough
rates are decreasing with respect to rank. The performance of MWP depends
on the bidder dominance with respect to participants (i.e., the inverse of the
number of participants), and the drop-off rate of the slot-clickabilities. We show
that the revenue from MWP is at least a factor 1/4 of OPTWP , and approaches
optimal as the bidder dominance decreases and the drop-off in slot-clickabilities
becomes steep:

Theorem 8. MWP is truthful, and has competitive ratio

βWP =
θ̄r

g(αWP )θ̄br/2c

with respect to OPT 2
WP (the optimal weighted price auction selling at least two

items), where the function g(x) is defined in (5) from the Appendix, and lies
between 1/4 and 1/2 for x ≤ 1/2 (g(αWP ) ≥ 1/4 and g(αWP )→ 1/2 as αWP →
0).

Here θ̄m = Θm
m is the average clickability for the top m slots. (Since the θs are

decreasing, θ̄m decreases as m increases, i.e., as we average over more slots.) The
bidder dominance, αWP , is defined as

αWP =
1
r
,

where r = |OW | is the number of slots sold in OPTWP .
The value of βWP is roughly the product of two values: one value starts at 2

and tends to 1 as the number of bidders in the optimum solution increases, the
other value is the sum of all slot clickabilities, divided by the sum of the largest
half of the slot clickabilities, and always lies between 1 and 2.



4.2 Mechanism competitive with OPTSP

Next we describe and analyze a mechanism which is competitive with respect to
OPTSP . An application of previous results [1, 9] gives an auction that approaches
a competitive ratio of 4 as the bidder dominance decreases. We give a new proof
that tightens previous analysis and allows us to achieve a competitive ratio of
2 (this also improves on the results in [1]). We define bidder dominance in the
context of single price, to be the largest advertiser clickability in the optimum
solution divided by the sum of advertiser clickabilities in the optimum solution.
Then, we provide an analysis showing that as the CTRs become more steep, and
the bidder dominance approaches 0, the competitive ratio approaches 1.

Recall that OS is the set of bidders contributing positive revenue to OPTSP ,
p = |OS | and the optimal single price is vp.

Define the average clickability of bidders in OS as

µ̄ =

∑
i∈OS µi

p
,

and the bidder dominance

αSP =
µmax∑
i∈OS µi

,

where µmax is the largest clickability of bidders in OS . The smallest value of αSP
with p bidders in the optimal single price solution is 1/p, when all bidders have
the same clickability. (Note that this bidder dominance depends both on bidders’
values (which are implicitly present in αSP through p), and the clickabilities of
the bidders in OS .)

Define a second bidder dominance parameter

α′SP =
θ1µmax∑
i∈OS θjµi(j)

.

Observe that since the θ are decreasing, αSP ≤ α′SP , with equality when all the
θi are equal.

We prove that the mechanism below achieves near optimal revenue as αSP →
0, and the slot clickabilities decrease steeply enough. The competitive ratio also
shows that the revenue is always greater than 1

4 when at least two items are
sold.

Mechanism MSP

1. Partition bidders independently and uniformly at random into two subsets
S1 and S2.

2. Compute R1 = OPTSP (S1)− ε and R2 = OPTSP (S2) + ε.
3. Run ProfitExtractR1

SP on the bidders in S2, and
ProfitExtractR2

SP with the bidders in S1.

We prove the following theorem about this mechanism (the proof is included
in the Appendix):



Theorem 9. MSP is truthful, and has competitive ratio

βSP = max

(
pθ̄pαSP

g(αSP )θ̄p− 1
2αSP

,
1

g(α′SP )

)
,

against OPTSP when αSP ≤ 1/2, where 1
2 ≤

1
2αSP

≤ p
2 , and g(x) is defined in

(5) from the Appendix.

The first term in the max, roughly in words, is the product of three values.
The first is the largest ad clickability divided by the average ad clickability. The
second is the average slot clickability, divided by the average slot clickability of
a portion of the largest slot clickabilities (at least the half largest). Finally, the
last value is at least 1/4 and approaches 1/2 as the bidder dominance decreases
(here, bidder dominance is measured by ad-clickabilities and is assumed to be at
most 1/2).

To understand why decreasing clickabilities is advantageous, consider a weighted
price solution with two bidders. Each is capable of contributing the same amount
to the optimum solution. We could place them in arbitrary positions and still
obtain the same optimal revenue. However, in the optimum solution the one
placed in the highest position contributes more. Now suppose they have been
divided into two bins, (a.k.a. the first step of the random sampling auction).
Each bidder can now potentially contribute as much as the highest contributor
to revenue, even though its true contribution in the optimum is actually much
less. This is the intuition behind our improved analysis.

5 An Auction Competitive Against Multiple Benchmarks

In this section, we describe a mechanism with high revenue guarantees against
both the single price and weighted price benchmarks. To do this, we use the
two random-sampling auctions from §4 that have high competitive ratio against
OPTSP and OPTWP respectively. We combine these two auctions to derive a
single auction with a Nash equilibrium that raises revenue at least that raised
by each of the individual random-sampling auctions.

As we saw in §3, for a particular set of values and clickabilities (vi, µi), either
the optimum weighted price revenue OPTWP or optimum single price revenue
OPTSP can be larger. However, which of the two is actually larger cannot be
determined without knowing the true values of the bidders.

Here, we describe a new mechanism that builds on the two auctions in §4 to
raise higher revenue. Of course, we can combine the two auctions using random-
ization into a single truthful auction that raises expected revenue 1

2 (OPTSP /βSP
+ OPTWP /βWP ). To achieve a revenue that is the better of the two auctions, we
break from truthful mechanism design and instead design an auction with equi-
libria (which we show always exist) such that the revenue raised is at least the
larger of the revenues that would be raised by the auctions MWP and MSP . The
resulting equilibrium analysis framework for the random sampling approach is



more robust and malleable. Our hope is that this additional flexibility will have
implications for other contexts and applications as well.

Mechanism MC

1. Partition the bidders randomly into two sets A and B, announce the parti-
tion, and collect bids from all bidders.

2. Compute RA = max(OPTASP , OPT
A
WP ), and

RB = max(OPTBSP , OPT
B
WP ) using the reported bids.

3. Run ProfitExtractR
B

SP on the bidders in A; if the auction fails to raise rev-
enue RB , run ProfitExtractR

B

WP . Do the same for the bidders in B.
4. If RA = RB , then items are only assigned to bidders in partition A.

We point out that the revelation principle does not apply in our setting; also,
bidding truthfully is not necessarily an equilibrium strategy (we will state later
for which bidders it is not an equilibrium strategy, and demonstrate this with
an example).

In what follows, we will use RA
∗

to denote the value of RA when every bidder
bids his true value (similarly for RB , OPTASP , OPTAWP , OPTBSP , and OPTBWP ).

We show the following result for the combined auction for every instance of
the random partition of bidders:

Theorem 10. There always exists an equilibrium solution with revenue R at
least

min(max(OPTA
∗

SP , OPT
A∗

WP ),max(OPTB
∗

SP , OPT
B∗

WP )).

Further, if bidders bid their true value whenever bidding truthfully belongs to
the set of utility maximizing strategies, every Nash equilibrium of MC has this
property.

Proof. Assume without loss of generality that RA
∗ ≥ RB

∗
. First we will show

existence. We consider the following cases:

– Case I: RB
∗
> min(OPTA

∗

SP , OPT
A∗

WP ), i.e., only one of the two auctions can
raise the revenue RB

∗
from bidders in A. Then bi = vi is a Nash equilibrium

for the combined auction: every bidder who does not win an item has no
incentive to deviate from bi = vi, since his utility is 0 for all bi ≤ vi, and
can only be non-positive if he reports a bid bi > vi. Every bidder who wins
an item has no incentive to deviate: if he reports bi ≤ vi, his utility cannot
increase, since he either fails to win an item, or wins an item but still pays
a price independent of his bid. If he reports bi > vi then his price will not
decrease (the price is independent of the bid), but he risks not receiving an
item. This Nash equilibrium raises revenue RB

∗
, since every bidder in B

reports his true value.
– Case II: RB

∗ ≤ min(OPTA
∗

SP , OPT
A∗

WP ), i.e., the revenue RB
∗

can be ex-
tracted using both single price and weighted price mechanisms from bidders
in A. We will show that there is a Nash equilibrium in which B is the losing
partition, and bids are as specified below.



First, note that for all bidders (in both partitions) who do not win an item
in either solution, there is no incentive to deviate from bi = vi, using the
same reasoning as above. Since the bidders in B lose, the mechanism tries
to extract revenue RB

∗
from the bidders in A.

For the same reason, every bidder who can win an item in only one of OPTSP
or OPTWP has no incentive to deviate from bi = vi. This leaves us with
bidders who might win an item in both OPTSP and OPTWP . We consider
two sub-cases for bidders with such values, based on the following condition:
Condition C: There is no bidder with higher utility in OPTWP who can
unilaterally decrease his bid enough to ensure that
ProfitExtractSP fails to extractRB

∗
, while still winning an item inOPTWP .

• Condition C holds: In this case, bi = vi is an equilibrium vector of bids.
A bidder winning an item in both OPTWP and OPTSP has no incentive
to bid bi > vi; if he reports bi < vi, he might fail to win an item in
OPTSP , which still extracts revenue RB

∗
by assumption.

• Condition C does not hold (i.e., there is at least one bidder with higher
utility in OPTWP who can unilaterally decrease his bid enough to ensure
that ProfitExtractSP fails to extract RB

∗
while still winning an item

in OPTWP .)
Let w∗ be the single weighted price at which
ProfitExtractWP extracts revenue RB

∗
from the bidders in A. Let i

be a bidder satisfying the condition above. Then the vector of bids with
bi = w∗/µi for any one bidder satisfying this condition, and bi = vi for
all other bidders is a Nash equilibrium: there is no incentive for i to
change his bid because bi is the lowest bid at which i still can win an
item in OPTWP ; by assumption this bid is low enough to ensure that
ProfitExtractSP fails to raise RB

∗
. Further, bidder i cannot increase

his utility by deviating from this value, nor can any other bidder improve
its utility by deviation. Note that bidder i can be any single bidder that
causes the condition to be violated.

Therefore, in either subcase, there is a Nash equilibrium in which B is the
losing partition, and that extracts the specified revenue.

We now prove the second part of the theorem. If bidders bid their true value
whenever bidding truthfully belongs to the set of utility maximizing strategies,
bidders in the losing partition always bid their true value. Therefore, the only
Nash equilibria are those where B is the losing partition, in which case a revenue
of RB

∗
is extracted. So every Nash equilibrium of MC extracts the specified

revenue.

For a particular partition of the bidders into A and B, the revenue extracted
by MSP is

RSP = min(OPTA
∗

SP , OPT
B∗

SP ),

and the revenue extracted by MWP is

RWP = min(OPTA
∗

WP , OPT
B∗

WP ).



From Theorem 10, the revenue extracted by the auction MC is
min(max(OPTA

∗

SP , OPT
A∗

WP ), max(OPTB
∗

SP , OPT
B∗

WP )), which is greater than or
equal to max(RWP , RSP ). Taking the expectation over random partitions, we
see that the expected revenue from MC is at least max(βpOPTSP , βrOPTWP ).
(Note that MC is actually stronger, since we obtain the larger revenue of MWP

and MSP for every partition, not just in expectation over partitions.)
A natural question is whether such a situation, where a bidder prefers one

mechanism to the other, and can indeed make the other mechanism fail to raise
revenue can indeed exist. Also, can the natural opposite mechanism not be tried
then- is it possible to have a situation where there are both bidders who prefer
WP and who prefer SP , and both can make the other mechanism fail?

The following example will show that this can indeed happen, and help un-
derstand why the mechanism is not truthful. We give an example with two
bidders where, given the revenue to be raised by the weighted price and single
price auctions, each bidders prefers a different auction, and further, is able to
make the other mechanism fail, i.e., unable to raise the required revenue.

Suppose v1 = 1, v2 = 2, µ1 = 2, µ2 = 1, and θi = 1. For these values,
OPTWP = 4, OPTSP = 3, so both auctions can raise a revenue of 3. To raise
this revenue using the weighted price mechanism, bidder 1’s price is 1.5/2 = 3/4,
and his utility is 2(1 − 3/4) = 1/2. Bidder 2 is charged a price of 1.5, and his
utility is 1(2−1.5) = 1/2. When the single price mechanism is used, both bidders
are charged a price of 1, and their utilities are 2 ∗ (1− 1) = 0, and 1 ∗ (2− 1) = 1
respectively. Thus bidder 1 has higher utility when the revenue of 3 is raised
using weighted price, and bidder 2 has higher utility under single price. Further,
if bidder 1 bid 3/4 instead of her true utility of 1, the single price mechanism
can no longer raise the revenue of 3, while weighted price still can; similarly, if
bidder 2 bids 1 instead of her true utility of 2, the weighted price mechanism can
no longer raise a revenue of 3, while single price still raises the required revenue.
Thus each bidder has a bid different from her true value that can improve her
utility given that the other bidder bids her true value.

6 Simulation Results

In this section we numerically evaluate the revenues obtained from our auctions
against the optimal omniscient revenue, as well as the VCG auction, in a variety
of situations, and discuss the results. We draw bidder valuations from a log-
normal distribution with increasing variance and unit mean. This distribution
has been used in previous literature [7] and also fits the distribution observed
in practice. For our simulations, we used n = 50 bidders, k = 12 slots, and
ad-clickabilities µi proportional to vi. Each point plotted in a figure is obtained
by averaging over 800 draws of bidder valuations from a lognormal distribu-
tion of the corresponding variance and unit mean. We use two sets of vectors
for the slot clickabilities θ. We call slot clickabilities with θi = 0.7i Geometric
Slot-clickabilities. This distribution for slot clickabilites is in keeping with [8].
When several advertisements are shown at the top of the page and others shown



along the right hand side, the slot clickabilities tend to be significantly larger
for advertisements shown along the top. To model this situation, we use a set of
Sharp Geometric Slot-clickabilities, where the first four slots (presumably shown
along the top), decrease by a factor of .85, starting from .85, and the remaining
slots along the east, starting from .4, decrease by a factor of .4. We also point
out that because ad-clickabilities have the same ordering as the bid values, due
to Theorem 2, the revenue of a Nash equlibria using Mechanism MC equals the
revenue extracted using Mechanism MSP .

Fig. 1. Geometric Slot-clickabilities: Revenue versus Variance of Bidder Valuations
Drawn from a Log-normal Distribution

Fig. 2. Sharp Geometric Slot-clickabilities: Revenue versus Variance Including OPTmp

The general shape of Figures 2 and 1 follow a similar pattern. For σ = 0,
there is no variance in the bids and both algorithms achieve the revenue of
the optimal multi-price solution. Initially, the variance of the bids is small, and
the VCG auction outperforms the combined auction. As the variance in the
bid values begin to diverge more sharply, the combined mechanism outperforms
VCG.

VCG revenue decreases dramatically because as the bid values become more
varied and every individual’s bid value more distinctive, the externalities a bidder



imposes on others decreases (because externalities measure, to some degree, how
’replaceable’ a bidder is). We can also consider highly varied bid values as a less
competitive market. If a single bidder’s value lies far away from others, it does
not have to fight other contenders off for his position: it is clear who the winners
should be and there is not much competition for the clicks.

It is often difficult to design incentive compatible auctions for markets with
little competition. Truthful auctions rely on bids other than bi to set values
for bidder i. When there is a lot of variance in the bids, choosing a reasonable
price is more challenging. This can be seen by observing Figure 3. The multiprice
optimum shoots up, relative to both algorithms, as the bidder variance increases.
This suggests that both algorithms have difficulty obtaining revenue in these
situations. The simulations corroborate the findings in Theorem 6, which prove
analytically that the tighter the range of bidder vales, the higher the performance
guarantee.

Since the combined mechanism is designed to do well in a worst case setting,
it is not surprising that its performance improves relative to VCG exactly when
maintaining a minimal amount of revenue in the face of a challenging situation
(i.e.non-competitive market) is encountered.

Figures 1 and 2 highlight how the steepness of slot-clickabilities impacts the
algorithms’ revenues. There is very little difference in the curve for the VCG
mechanism when the slot clickabilities are steeper. However, the improvement
for the combined mechanism is more noticeable, outperforming VCG earlier and
by a larger margin. This is consistent with our analysis, which indicates that the
auction will perform better as the steepness in slot clickabilities increases.

Fig. 3. Revenue versus Variance Including OPTMP

Our simulations use the algorithms described in §4 and §5, but the auctioneer
could alternatively implement a variation of the combined auction where the par-
tition splits into two sets of equal size, chosen uniformly at random. In practice,
this algorithm maintains an equilibrium (and truthfulness where appropriate).



Although more cumbersome to analyze, it is a more appropriate algorithm in to
use in practice and leads to a slight increase in performance.

7 Future Work

There are a number of interesting questions that remain open. First, is it possible
to design truthful auctions that achieve better guarantees (i.e., better competi-
tive ratios), or else show an impossibility result? Another question is whether it
is possible to perform competitive analysis using optimal price random sampling
auctions for better guarantees, along the lines of [9, 4]. Also, it would be inter-
esting to theoretically compare the performance of these auctions against other
benchmarks. Perhaps we can theoretically bound the revenue in our auction
against VCG revenue, or against the best VCG revenue obtained by artificially
limiting the supply as in [12]. Another possible benchmark would be to compare
against the optimal revenue auction from Myerson[18] given noisy information
about bidder valuations.

A considerable obstacle in achieving good bounds for keyword search prob-
lems is that the performance relies on having a large scale problem where no
individual bidder has too much influence on the optimum solution. If there are
many auctions with similar properties, it is possible that they could be used
either to merge markets together so that the competitive ratio approaches op-
timal more quickly, or to use advertisers and bidders for one set of keywords to
determine solutions for other sets of keywords. Finally, it would be interesting
to adapt the auctions presented here to set reserve prices.

Acknowledgements: We are very grateful to Andrei Broder, Ravi Kumar,
Ofer Mendelevitch and Michael Schwarz for helpful discussions.
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Appendix

First we give the two extensions of ProfitExtract used in MWP and MSP .

ProfitExtractRWP - A Weighted Price Auction

Set K = min(k, |S|). While K > 0

1. Set w = R∑K

i=1
θi

.

2. If there are at least K bidders with bid bi ≥
w/µi, assign slot j to the bidder with clickability
µi(j) for j = 1, . . . , k, and return this allocation
and w.

3. Set K = K − 1.

If K = 0, all bidders lose.

Lemma 1. ProfitExtractRWP is truthful, and extracts revenue R if R ≤ OPTWP (S),
and 0 otherwise.

We note that arbitrarily allocating winning bidders to slots can also be used
for the same results; we use this for consistency with the ProfitExtractSP .

ProfitExtractRSP - A Single Price Auction

Set S̄ = S, the set of all bidders. While S̄ 6= ∅

1. Set K = min(k, |S̄|).
2. Set p = R∑K

j=1
µi(j)θj

, where µi(j) denotes the jth

largest clickability of bidders in S̄.
3. If each of the k bidders contributing to the de-

nominator has bid bi(j) ≥ p, assign slot j to the
bidder with clickability µi(j) and return this al-
location and a single price of p.

4. Remove all bidders with bi < p from S̄.

If S̄ = ∅, all bidders lose.

Lemma 2. ProfitExtractRSP is truthful, and extracts revenue R if R ≤ OPTSP (S),
and 0 otherwise.

A Competitive ratio of MW P

Here we restate and prove Theorem 8:



MWP is truthful, and has competitive ratio

βWP =
θ̄r

g(αWP )θ̄br/2c

with respect to OPT 2
WP , where g(αWP ) ≥ 1/4, and g(αWP )→ 1/2 as αWP → 0.

Proof. The revenues R1 (resp. R2) to be extracted and the number of slots k are
independent of the bids of bidders in S2 (resp. S1). Since ProfitExtractWP with
independent parameters is truthful, MWP is truthful in this case. The addition
and subtraction of ε ensures R1 6= R2. Combined with Lemma 1, the revenue
from this auction is RWP = min(R1, R2), exactly one side of the partition wins,
and we do not oversell advertisement slots. Since ε is chosen to be very small
compared to the precision of the revenue, we ignore it in the analysis that follows.

Observe that R1 is greater than or equal to the optimal weighted price rev-
enue from bidders in S1∩OW . So we need only consider partitioning the bidders
in OW to bound the revenue. If |S1 ∩ OW | = i, and |S2 ∩ OW | = r − i, then
R1 ≥ wriθ̄i, and R2 ≥ wr(r − i)θ̄r−i, where wr = vrµr is the contribution of
each bidder in OPTWP . So we have

E[RWP ]
OPT 2

WP

≥ 1
rθ̄r

r−1∑
i=1

min(Θi, Θr−i)
(
r

i

)
2−r

≥
θ̄br/2c

rθ̄r

b r2 c∑
i=1

i

(
r

i

)
2−r

≥
θ̄br/2c

θ̄r
(
1
2
−
(
r − 1
b r2c

)
2−r),

where the second line follows since iθ̄br/2c ≤ iθ̄i = Θi for all i ≤ br/2c. Define,
for x ≤ 1/2,

g(x) = xb 1
x
c

(
1
2
−
(b 1

xc − 1
b 1

2xc

)
2−b

1
x c

)
. (5)

Thus, the competitive ratio is θ̄r
g(αWP )θ̄br/2c

as stated.

B Competitive ratio of MSP

We now restate and prove Theorem §9:
MSP is truthful, and has competitive ratio

βSP = max

(
pθ̄pαSP

g(αSP )θ̄p− 1
2αSP

,
1

g(α′SP )

)
,

against OPTSP when αSP ≤ 1/2, where 1
2 ≤

1
2αSP

≤ p
2 , and g(x) is as in (5).



Proof. Following the same reasoning as in the proof of Theorem 8, MSP is truth-
ful, and the revenue extracted is min(R1, R2) (and exactly one side of the par-
tition wins). Again, we ignore ε in the analysis since it is negligibly small.

Let r = (r1, . . . , rn), where ri is the revenue contributed by bidder i to
OPTSP . Observe that R1 ≥

∑
i∈S1∩OS ri : every bidder in S1 ∩ OS has value

greater than or equal to vp, and is assigned to a slot with θj greater than or
equal to his assignment in OPTSP (the same argument holds for R2). So it is
enough to consider bidders in OS , and bound

R(r) = E[min(
∑

i∈S1∩OS

ri,
∑

i∈S2∩OS

ri)]

against
∑
i∈OS ri.

To do this we will apply Lemma 3 to a vector r′ with m = b1/α′SP c non-zero
entries of value rmax = θ1µmax each, where r′ is obtained by repeatedly applying
Redistribute (see Lemma 3) to r. From the Lemma, bounding

R(r′) = E[min(
∑

i∈S1∩OS

r′i,
∑

i∈S2∩OS

r′i)]

gives us a bound on revenue. But this is easy since each of the non-zero entries
in r′ have the same value rmax:

R(r′) = rmax

m−1∑
i=1

min(i,m− i)
(
m

i

)
2−m = mrmaxg(α′SP ).

Therefore,
R(r)

OPTSP
≥ g(α′SP ). (6)

However, this analysis does not account for the fact while computing the
optimum single price revenues on each side, the winning bidders are associated
with clickthrough rates greater than or equal to those in OPTSP . Next we obtain
another bound accounting for this; the final competitive ratio is the better of
the two bounds.

For any partition of the bidders, assume without loss of generality that the
sum of clickabilities of bidders from OS is smaller in the partition S1, and let∑

i∈S1∩OS

µi = δ(
∑
i∈OS

µi) = δpµ̄,

where 0 ≤ δ ≤ 1/2. Let X = |OS ∩ S1|. The optimal single price revenue from
this subset of the bidders is

R1 ≥ vp
∑

i∈O∩S1

µi(j)θj

≥ vp
δpµ̄

X

X∑
j=1

θj

= vpδpµ̄θ̄X ,



Recall that the mechanism assigns bidders with highest clickabilities to the
top slots. Similarly,

R2 ≥ vp(1− δ)pµ̄θ̄p−X .
So the smaller of the two revenues is bounded by

min(R1, R2) ≥ (pvpµ̄) min(δ, 1− δ) min(θ̄X , θ̄p−X)
= pvpµ̄δθ̄max(X,p−X),

since we assumed 0 ≤ δ ≤ 1/2 and θ̄m decreases with increasing m since the θs
are decreasing.

Define γ = µmax
µ̄ = αp. We upper bound X as follows: the number of bidders

in the partition with the larger fraction of µ̄p must be at least

(p−X) ≥ (1− δ)pµ̄
µmax

,

⇒ X ≤ (γ − 1 + δ)p
γ

≤
p(γ − 1

2 )
γ

,

since δ ≤ 1/2. Since γ ≥ 1, (γ − 1/2)/γ ≥ 1/2, and so

max(X, p−X) ≤
p(γ − 1

2 )
γ

as well.
So for a particular partition with ratio δ, we have

min(R1, R2) ≥ δpvpµ̄θ̄ p(γ− 1
2 )

γ

, (7)

where now the only term that depends on the random partition is δ.
The single price optimal revenue is bounded as

OPTSP ≤ vpµmaxpθ̄p = γpvpµ̄θ̄p.

So the expected revenue from this mechanism is

min(R1, R2)
OPTSP

≥
E[δ]θ̄ p(γ− 1

2 )
γ

γθp
, (8)

where
E[δ] = (

∑
i∈OS

µi)E[min(
∑

i∈S1∩OS

µi,
∑

i∈S2∩OS

µi)].

We bound E[δ] using Lemma 3 as we did above, to obtain

min(R1, R2)
OPTSP

≥ g(αp)
θ p(γ− 1

2 )
γ

γθp
. (9)

Combining the two results in (6) and (9), and using γ = αp, we have the
theorem.



Now we state and prove Lemma 3. Let b = (b1, . . . , bn) be a vector of non-
negative numbers. For i, j with bi ≥ bj , and any ∆ with 0 ≤ ∆ ≤ bj , define
b′ = Redistribute(b, i, j,∆) to be the vector with b′i = bi + ∆, b′j = bj − ∆,
and b′m = bm for m 6= i, j. Define R(b) = E(min(

∑
i∈S1

bi,
∑
i∈S2

bi)), where
each bi is independently thrown into S1 or S2 with probability 1/2 (i.e., R(b) is
the expected value over random partitions of the sum of entries in the smaller
partition).

Lemma 3. For any nonnegative vector b, R(b) ≥ R(b′), where b′ =
Redistribute(b, i, j,∆).

Proof. Let S0 = {1, . . . , n}. Consider the set Smin of all subsets with the lesser
sum for the given vector b, i.e., Smin = {S ⊂ S0|

∑
j∈S bj ≤

∑
j∈S0−S bj}. Given i

and j, the indices of the bids in the Redistribute operation, partition the sets in
Smin into four sets as Sbibj = {S ∈ Smin|bi, bj ∈ S}, Sb̄ib̄j = {S ∈ Smin|bi, bj∈̄S},
Sbib̄j = {S ∈ Smin|bi ∈ S, bj∈̄S}; Sb̄ibj = {S ∈ Smin|bi∈̄S, bj ∈ S}.

Let pS denote the probability of a particular set S ∈ Smin being the subset
in the random partition with the smaller value (note that choosing S is the
same as choosing the partition of the bids bi). Let us write |S|b =

∑
i∈S bi, and

|b| =
∑n
i=1 bi. Then,

R(b) =
∑

S∈Sb̄ibj

pS |S|b +
∑

S∈Sbib̄j

pS |S|b,

+
∑

S∈Sbibj

pS |S|b +
∑

S∈Sb̄ib̄j

pS |S|b (10)

and

R(b′) =
∑

S∈Sb̄ibj

pS(|S|b −∆)

+
∑

S∈Sbib̄j ,|S|b+∆≤
|b|
2

pS(|S|b +∆)

+
∑

S∈Sbib̄j ,|S|b+∆>
|b|
2

pS(|b| − |S|b −∆)

+
∑

S∈Sbibj

pS |S|b +
∑

S∈Sb̄ib̄j

pS |S|b. (11)

Note that for sets S with Sb + ∆ > |b|/2, |S|b − ((|b| − |S|b −∆) = 2|S|b −
|b|+∆ > −∆. Subtracting (11) from (10) and using this, we see that

R(b)−R(b′) >
∑

S∈Sb̄ibj

∆pS +
∑

S∈bib̄j ,|S|b+∆≤|b|/2

pS(−∆)



+
∑

S∈Sbib̄j ,|S|b+∆>|b|/2

pS(−∆)

= ∆(
∑

S∈Sb̄ibj

pS −
∑

S∈Sbib̄j

pS).

But this difference is clearly positive: since bj ≤ bi, for every set S ∈ Sbib̄j ,
there is a set S′ ∈ Sb̄ibj obtained by swapping bi with bj ; also pS′ = pS . So∑
S∈Sb̄ibj

pS >
∑
S∈Sbib̄j

pS , and the lemma is proved.


