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ABSTRACT

We study the design of truthful mechanisms that do not
use payments for the generalized assignment problem (GAP)
and its variants. An instance of the GAP consists of a bipar-
tite graph with jobs on one side and machines on the other.
Machines have capacities and edges have values and sizes;
the goal is to construct a welfare maximizing feasible as-
signment. In our model of private valuations, motivated by
impossibility results, the value and sizes on all job-machine
pairs are public information; however, whether an edge ez-
ists or not in the bipartite graph is a job’s private informa-
tion. That is, the selfish agents in our model are the jobs,
and their private information is their edge set. We want to
design mechanisms that are truthful without money (hence-
forth strategyproof), and produce assignments whose welfare
is a good approximation to the optimal omniscient welfare.

We study several variants of the GAP starting with match-
ing. For the unweighted version, we give an optimal strate-
gyproof mechanism. For maximum weight bipartite match-
ing, we show that no strategyproof mechanism, deterministic
or randomized, can be optimal, and present a 2-approximate
strategyproof mechanism along with a matching lowerbound.
Next we study knapsack-like problems, which, unlike match-
ing, are NP-hard. For these problems, we develop a gen-
eral LP-based technique that extends the ideas of Lavi and
Swamy [14] to reduce designing a truthful approximate mech-
anism without money to designing such a mechanism for
the fractional version of the problem. We design strate-
gyproof approximate mechanisms for the fractional relax-
ations of multiple knapsack, size-invariant GAP, and value-
invariant GAP, and use this technique to obtain, respec-
tively, 2, 4 and 4-approximate strategyproof mechanisms for
these problems. We then design an O(logn)-approximate
strategyproof mechanism for the GAP by reducing, with log-
arithmic loss in the approximation, to our solution for the
value-invariant GAP. Our technique may be of independent
interest for designing truthful mechanisms without money
for other LP-based problems.
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1. INTRODUCTION

The design of truthful mechanisms, where selfish utility
maximizing agents have no incentive to lie about their true
preferences, has been studied in innumerable settings. The
vast majority of these mechanisms, however, assume the ex-
istence of money— a carefully designed payment scheme in-
centivizes agents to report their preferences truthfully. How-
ever, there are settings where monetary transfers are not fea-
sible, either because of ethical or legal issues [16], or because
of practical issues with enforcing and collecting payments
[17]. This observation has led to a growing literature on de-
signing mechanisms that incentivize agents to report their
true preferences without using payments: for convenience,
we refer to such mechanisms as strategyproof.

In this paper, we focus on the design of strategyproof
mechanisms for assignment problems. An instance of an as-
signment problem consists of a bipartite graph with items,
or jobs, on one side, and bins, or machines, on the other;
associated with each bin is a capacity, and with each edge a
value and a size. A feasible assignment is a (partial) map-
ping from items to bins, where no bin’s capacity is exceeded
by the sizes of the items assigned to it. The goal is to com-
pute a feasible assignment that maximizes welfare: the sum
of the values of the jobs for machines they are assigned to.

The most general version of this problem, where both the
size and value of a job can differ for different machines, is
referred to as the generalized assignment problem (GAP). A
number of well-known algorithmic assignment problems are
special cases of the GAP. For instance, the problem with
just one bin is the knapsack problem, and the problem with
unit-sized items and bins is the maximum weight bipartite
matching problem. Assignment problems are ubiquitous,
and have been extensively studied due to their vast appli-
cability, both from an algorithmic and mechanism design
perspective. However, studying these problems in a setting
without money, as we do, adds additional difficulties, since
properties like monotonicity and weak monotonicity (see [15,
3, 13, 16]) no longer suffice for truthfulness. Moreover, the
popular VCG mechanism, as well as the maximal in range
paradigm, require payments for truthfulness.

There are a number of settings where part of the input
to an assignment problem is held by selfish agents, and the
problem must be solved without the use of money. Unfor-
tunately, as we discuss in §2.3, not much can be done if
jobs hold their real-number values for the various machines
private; this is consistent with many impossibility results
from social choice theory. In this paper, we therefore focus
on a restricted, yet natural, setting that admits interesting



results— for each pair (7, ), it is public knowledge that the
value of job 4 for machine j is either v;; or 0, but job i holds
private which of those is the case for each j. This mod-
els situations where the private data encodes a compatibility
relation between jobs and machines; the public v;; values
arise in situations where the value derived from an assign-
ment materializes over a public channel (for instance via a
verifiable financial transaction). As a result, a job cannot
hide its true value for any machine it anticipates being as-
signed to, although it can misreport a non-zero value as 0,
a lie that will not be discovered since the job will not be al-
located to this machine. We will see that, if the mechanism
is not chosen carefully, such strategic manipulations can be
beneficial to a selfish agent even in very simple instances of
the GAP. We also note that this is a multi-parameter prob-
lem, where each job holds one bit of private information for
each of the bins.

There are several natural settings that correspond to our
model of private values. Suppose, for instance, a group of
people are to split up a collection of tasks. Each task re-
quires different skills, and how well each person can perform
a task is public knowledge. Each task also has different time
and location constraints, and whether or not the constraint
is feasible for a person is only known privately to her. This
problem is an instance of weighted bipartite matching; while
finding an optimal solution is computationally easy, we are
interested in algorithms that also ensure strategyproofness.
In another example, consider a resource allocation problem,
such as scheduling jobs on a collection of non-identical ma-
chines. The value of running a job on a machine, as well as
the time it takes, is public knowledge. However, each job
requires specific hardware and software that is available on
only some of the machines. Moreover, only the owner of
the job knows which machines are compatible with the job.
Here, the algorithm used to assign jobs to machines must
ensure that the jobs do not have an incentive to lie about
which machines are compatible.

As in [17], we are interested in strategyproof mechanisms
that achieve a good approzimation to the welfare of the opti-
mal omniscient solution. The need for approximations arises
for two reasons in our work: first, the GAP is NP-hard, as
are several of its special cases; i.e., approximation is necessi-
tated by computational intractability. The second reason is
much more interesting— unlike in settings with payments,
solving the allocation problem optimally does not necessar-
ily lead to a truthful mechanism, and we need to sacrifice
approximation in order to obtain truthfulness. We will see
both factors playing a role as we seek strategyproof mech-
anisms that are good approximations to the various special
cases of GAP. For example, we will see that no strategy
proof mechanism for maximum-weight matching can be op-
timal, and we must sacrifice an approximation factor of 2 for
truthfulness. In contrast, a (non-polynomial time) algorithm
that returns an optimal solution to the multiple knapsack
problem while breaking ties consistently is strategyproof;
however, since we are interested in polynomial-time strate-
gyproof algorithms, we must resort to an approximately op-
timal mechanism that is both truthful and polynomial-time
implementable.

Why would an agent benefit from lying in assignment
problems when there are no payments? Consider, for in-
stance, the weighted bipartite matching problem (§3.2). Con-
sider the following instance: job a; has edges with weights

1+ € and 1 to machines b; and b2, and job a2 has an edge to
b1 with weight 1. An algorithm that simply chooses the max-
imum weight matching according to the reports incentivizes
job a1 to simply claim that the second edge does not exist:
in the first case, the assignment chosen is (a1, b2), (az,b1),
whereas in the second case, the assignment chosen is (a1, b1),
which suits a1 better, with value 1+ ¢. This example makes
it clear that that the optimal (and obvious) algorithms are
not necessarily truthful— not surprisingly, a carefully de-
signed algorithm is essential to ensure that no agent has an
incentive to lie, exactly as in mechanism design with money.

1.1 Our Results

We study the design of approximation mechanisms that
are truthful without money for several variants of the GAP.
We begin in §3 with matching, which can be solved opti-
mally in polynomial time from a purely computational per-
spective. We show that for the maximum matching prob-
lem, where all edge values are equal, simply returning the
optimal solution while breaking ties consistently leads to a
strategyproof mechanism. However, when a job’s value de-
pends on the machine, as in weighted bipartite matching,
no deterministic strategyproof mechanism can achieve an
approximation better than 2; we provide such a mechanism.

Next, we examine knapsack-like variants of the GAP. In-
stead of specially tailored combinatorial algorithms for each
variant, we extend the techniques in [14] to reduce design-
ing a truthful mechanism without money to designing such
a mechanism for the fractional version of the problem: if the
strategyproof mechanism for the fractional version yields an
« approximation to the optimal fractional solution, and the
corresponding LP has integrality gap (8, we derive a strat-
egyproof randomized mechanism for the original problem
with approximation ratio « - 3. This technique applies to
a large class of packing problems, and may of independent
interest.

The GAP has integrality gap 2, so a fractional strate-
gyproof mechanism with approximation ratio « yields a 2«
strategyproof (in expectation) mechanism for each of the
knapsack-like variants of the GAP that we study. In §4.2,
we show, using network flows, that solving the fractional
version of the multiple knapsack problem (MKP) optimally,
while breaking ties consistently independent of the reported
edges, gives an optimal strategyproof (fractional) mecha-
nism. For size-invariant GAP (SIGAP), there is no optimal
truthful (fractional) mechanism without money— in §4.3,
we design a strategyproof, 2-approximate greedy algorithm
for fractional SIGAP. Using our extension of [14] gives, re-
spectively, 2 and 4-approximate strategyproof mechanisms
for MKP and SIGAP. In §4.4, we sketch the construction of a
4-approximate strategyproof mechanism for value-invariant
GAP (VIGAP), as well as a O(logn)-approximate strate-
gyproof mechanism for the GAP.

We point out that without the polynomial time restric-
tion, there exist optimal strategyproof mechanisms for all
variants of GAP where a node has the same value for each
of its neighbors. That is, for maximum matching, MKP
and VIGAP, simply solving the problem optimally, while
breaking ties consistently independent of the private values
(edges), leads to a truthful-without-money mechanism. For
these problems, it is only computational intractability which
causes us to lose an approximation factor. This is in contrast
to the variants where a node has different values for different



edges such as maximum weight matching and its generaliza-
tions. There, as we show in Theorem 3.3, strategyproofness
and optimality cannot be achieved simultaneously.

1.2 Reated Work

Assignment problems have been studied extensively in the
algorithms literature. Shmoys and Tardos [18] presented a
2-approximation for a minimization version of the GAP, and
Chekuri and Khanna [10] observed that a 2-approximation
to the maximization version — the version considered in this
paper — is implicit in [18]. Moreover, it was shown in [10]
that the multiple knapsack problem — a special case of the
GAP — admits a PTAS', yet most generalizations of MKP
— including the GAP— are APX hard. Fleischer et al [12]
obtained a —%; approximation for the GAP, and showed
that this is optimal for a slight generalization of the GAP.
However, Feige and Vondrak [11] then showed that the GAP
admits a constant approximation slightly better than
and this is the best currently known.

A number of results for the mechanism design version of
assignment problems are known, although these are all in
settings with money. In all of these results, the items hold
their values private, and the rest of the instance is pub-
lic. A 2-approximate truthful-in-expectation mechanism fol-
lows immediately from the framework of Lavi and Swamy
[14]. Moreover, Briest et al [7] devised a truthful FPTAS for
the knapsack problem, as well as a truthful PTAS for VI-
GAP when the number of bins is fixed. Recently, Azar and
Gamzu [5] obtained a truthful 11-approximate mechanism
for a variant of MKP, and Chekuri and Gamzu obtained
a 2 + e approximation for a variant of VIGAP. We note
that all the above mechanisms use money, and moreover the
mechanisms in [7, 5, 9] consider an incomparable setting to
ours: our model is multi-parameter whereas theirs is single-
parameter, but we consider a binary private value for each
item and bin as opposed to an arbitrary real number.

Mechanisms without money have a rich history in the so-
cial choice literature; for a survey, see [16]. Interest in ap-
proximate mechanisms without money has been sparked by
the recent work of Procaccia and Tennenholtz [17], which
introduces the idea of using approximation to enable truth-
fulness in settings where solving optimally does not admit
truthfulness without money. Approximate mechanisms with-
out money have been developed for facility location [17, 1],
and selecting influential nodes in a social graph [2]. In very
recent work, Ashlagi et al. [4] study strategyproof mecha-
nisms for matching motivated by kidney exchange. While we
also study (bipartite) matching as a special case of the GAP,
their model is very different from ours: each agent owns a
set of vertices in a graph, and reports the existence of ver-
tices to maximize the number of her vertices matched by the
mechanism, plus the number that she can match amongst
her hidden vertices and the vertices unmatched by the mech-
anism. Also related is the work of [8], which studies a very
general combinatorial assignment problem without money,
and designs a mechanism which sacrifices efficiency, as well
as weakens the notion of incentive compatibility, to achieve
fairness.
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"However, we note that this PTAS is not applicable to the
generalization of MKP that we consider, where assignments
are constrained by a bipartite graph over items and bins. It
follows from [10, Theorem 3.2] that this is APX-hard.

2. MODEL

We describe the optimization version of the Generalized
Assignment Problem (GAP), as well as its various special
cases that we consider, in §2.1. We then review truthfulness
in §2.2, and discuss the limitations of truthfulness without
money for the GAP in §2.3. These limitations motivate our
model of private valuations, which we then introduce in §2.4.

2.1 TheGeneralized Assignment Problem

In the GAP, there are n jobs and m machines. We denote
the set of jobs by [n] = {1,...,n}, and the set of machines by
[m] = {1,...,m}. Machine j has capacity ¢c; € R*. For each
job i and machine j, we associate a value v;; € R' and a size
sij € RT. An assignment is a function x : [n] — [m]{J {*}
partially mapping jobs to machines, where * indicates that a
job is left unassigned. We use z(7) to denote the machine (or
) that job 7 is assigned to. Moreover, the binary variable
z;; indicates whether z(i) = j. A feasible assignment may
allocate to machine j a set of jobs of total size at most c;.
The GAP can be written as an integer program with decision
variables {zi;},;; the LP relaxation obtained by relaxing the
constraint x;; € {0, 1} is given below.

maximize Z” Vij Tij
subject to 77, wi; <1, fori=1,...,n.
E?:l SijTij < Cj, for ] = 1, e, M.
0 S Tij S 1
(GAP LP)

The above LP is known to have an integrality gap of 2,
and the rounding can be done in polynomial time [18, 10].

As detailed in §2.4, we consider a setting where the pri-
vate data is a bipartite graph specifying job-machine com-
patibility. That is, the private data are not the values v;;
or the sizes s;;, but rather the existence of the edge (i, 7).
Note that this does not change the GAP from an algorith-
mic point of view, since one can encode the compatibility
relation in the values {v;;},;. We define GAP[E] for a bi-
partite graph F C [n] X [m] as the problem of computing the
welfare-maximizing assignment using only edges in E. The
LP relaxation of GAP[E] is given below.

maximize Z” VijTij
subject to 3770 w5 < 1, fori=1,...,n.
Yo sty <¢j, forj=1,...,m.
0<uz; <1
zij =0, for (i,7) ¢ E.
(GAP[E] LP)

We distinguish several variants of the GAP and their re-
spective bipartite-graph versions. The Size-Invariant Gen-
eralized Assignment Problem (henceforth SIGAP) is the prob-
lem where the size of a job 7 does not depend on the machine
— we denote this size by s;. Similarly, the Value-Invariant
Generalized Assignment Problem (henceforth VIGAP) is the
problem where the value of a job i does not depend on the
machine — we denote the value by v;. The Multiple Knap-
sack Problem (henceforth MKP) is the problem where nei-
ther size nor value depend on the machine. The knapsack
problem (henceforth KP) is MKP with m = 1.

In addition to knapsack-type problems like those dicussed
above, the GAP also generalizes bipartite matching prob-



IWBM = MWBM|E

SIGAP = SIGAP|[E]

GAP = GAP[E]
VIGAP = VIGAP[E

Figure 1: Relationships between Assignment Problems
Arrow indicates the second problem is a special case of the first.
The = symbol indicates computationally equivalent problems.

Problem Upper Lower Integrality
Bound Bound Gap

GAP/ GAP[E] =5 — 90 APX-hard 2
SIGAP/ SIGAP[E] =5 — 0 APX-hard 2
VIGAP/ VIGAP[E] =7 — 0 APX-hard 2
MKP[E] =5 -9 APX-hard 2
MKP PTAS Strongly NP-hard 2
MWBM/ MWBMIE] 1 1 1
MBMI[E] 1 1 1

Table 1: Computational Upper and Lower Bounds
¢ is a small, positive, fixed real number.
The integrality gap is given for the standard LP relaxation.

lems. The mazimum weight bipartite matching problem (hence-

forth MWBM) is the problem where all capacities and sizes
are 1. The mazimum bipartite matching problem (henceforth
MBM) is the special case of MWBM where all values are 1.
The latter is only interesting when constrained by a graph;
that is, when we consider MBMJ[E] for some E C [n] x [m].

When discussing a special case of GAP, say MKP, we
refer to the bipartite-graph constrained version as MKP[E].
Moreover, we refer to (GAP LP) and (GAP[E] LP) as (MKP
LP) and (MKP[E] LP), respectively. We also use similar
notation for other special cases of the GAP.

Figure 1 illustrates the ordering of the various assignment
problems by generality. We summarize the known algorith-
mic results, both upper and lower bounds, in Table 1.

2.2 Truthfulness

We consider the setting where jobs are selfish agents, and
their private types encode information about their value for
being assigned on different machines. Other information,
such as n,m, {si;},; and {c;}]., is considered public?.

21t is conceivable that the job sizes s;; are private informa-
tion as well. However, if jobs can lie about their sizes, we
need to define the utility to a job when it is fractionally
assigned— a job can either derive fractional utility from a
fractional assignment, or zero utility if it is not fully as-
signed to a machine. Both models are reasonable; for the
first, a nontrivial proof shows that no reasonable approxi-
mation can be obtained by any randomized strategyproof
mechanism. For the second model , where jobs derive no
utility from partial assignments, it turns out that jobs have

We assume that player ¢ has a type v; = {vij};.n:l, spec-
ifying his value for the different machines. We assume the
possible types of player i are restricted to some public set
Vi € R™, and use V to denote V1 X. .. V,,. For example, when
working in the multiple knapsack problem, we require that
for each job ¢ there is a real number v; such that v;; = v; for
all j. Moreover, as we will see in §2.3, no interesting results
without money are possible if possible values are unbounded.
Therefore, our positive results will assume a restricted, dis-
crete set of possible types described in §2.4.

A mechanism without money for the GAP is simply an
algorithm that takes in all the problem data, public and pri-
vate, and outputs an assignment of the jobs to the machines.
We allow our mechanisms to be randomized. We use A(I,v)
to denote the output of mechanism A on public data I and
private data v € V. Each mechanism A and instance of the
public data I induces a social choice rule : a function A(I, *)
mapping private valuations to assignments.

We now state truthfulness without money generally.

DEFINITION 2.1. Fiz a mechanism without money A, let
x denote the assignment A(I,v), and let x’ denote the as-
signment A(I,v_;|Jv;) when player i changes his report to
v;. Mechanism A is truthful if and only if the following al-
ways holds for for each I, v €V, i, and v; € V;.

m m
z : 2 : l

VijTij 2 vijxi]—. (1)
j=1 Jj=1

Similarly, a randomized mechanism A is truthful in expec-
tation without money if and only if

m

E[Z vijxij] Z E[Z Uijxéj}. (2)

In other words, a mechanism A is truthful if a job never
benefits from misreporting its private data. A randomized
mechanism A is truthful in expectation if no (risk-neutral)
job has an incentive to misreport its private data.

2.3 Limitsof Truthfulnesswithout Money

Here, we will justify considering a discrete valuation model
by observing that, assuming general valuations, no inter-
esting results are possible. Indeed, we assume a restricted
setting: the knapsack problem, with a knapsack of capac-
ity 1, and jobs of size 1. If V; = RT for each i, then it is
easy to see that this is equivalent to the classical problem
of a single item auction [19]. It is well known that no non-
trivial guarantees are possible for a single-item auction if the
mechanism is required to be truthful-in-expectation without
using money. In fact, it is easy to see that no mechanism
can outperform the trivial one which allocates the item (in
our case, the entire capacity of the knapsack) uniformly at
random, achieving an approximation ratio of n.

24 ThePrivate Graph Valuation Model

Given that no nontrivial upperbounds are possible when
players can arbitrarily misrepresent their values, we consider
a restricted model of the valuations: one of a discrete nature
as is characteristic of many problems for which truthfulness
without money is possible. We assume job i has a value of

no incentive to lie about their sizes in any of the algorithms
we design.



0;5vi; for being assigned to machine j, where v;; is public and
0;; € {0,1} is private. In other words, jobs may not lie about
their potential value v;; (that is, v;; are publicly known or
verifiable), yet they may lie about which machines they are
compatible with. This compatibility relation is encoded via a
bipartite graph on the jobs and machines. Each job’s private
data is the set of its outgoing edges, i.e. the machines with
which it is compatible. As we discuss in §1, this situation
arises in many natural settings.

An instance of the GAP on a private bipartite graph is a
tuple (I, ), where I = ({vi;},;,{si;},;,{c;},) is public in-
formation, and E C [n] x [m] is private information solicited
from the jobs. E is a set of edges summarizing the compati-
bility of jobs and machines, where job i’s private data is the
set E; C F of edges in F incident on i. A job i receives
value v;; from being assigned to machine j only if (i,5) € E,
else it receives value 0. Our goal is to maximize welfare via
a mechanism that, without using money, incentivizes i to
report her set E; of edges truthfully.

We can now restate truthfulness as it applies to our model.
We use A(I, E) to denote the assignment computed by mech-
anism .4 on instance (I, E). Moreover, for an edge set E we
use F; C E to denote the set of edges with one endpoint at
job ¢, and use E_; to denote E \ E;.

DEFINITION 2.2. For a mechanism without money A, let
x denote allocation A(I,E), and let x' denote allocation
AL, E_;UE]). A is truthful if and only if the following
holds for each I, E, i, and E,.

Yoovgmg > Y vyl ®3)
G0 EB; D)ER;

Similarly, a randomized mechanism A is truthful in expec-
tation if and only if

E[ )

FHCR IS

vijzig) > B[ Y viaj] (4)

FHCR IS

Note that the summation on both sides of the inequality
is over the set of true edges E;: that is, A is truthful [in
expectation] if when a job misreports its incident edges, its
[expected] utility from the new assignment x’ does not in-
crease on its true edges FEj;.

3. COMBINATORIAL MECHANISMSFOR
MATCHING

We will show that optimally solving the maximum match-
ing problem, with some careful tiebreaking, yields a strate-
gyproof polynomial-time mechanism. For maximum weight
matching, we show matching upper and lower bounds of
2 for truthful mechanisms without money, and a constant
lowerbound for truthful-in-expectation mechanisms.

3.1 Warmup: Maximum Bipartite Matching

We consider the Maximum Bipartite Matching problem,
constrained by a private bipartite graph E. We observe
that simply finding the maximum matching, using consistent
tiebreaking, immediately gives a strategyproof mechanism.
The straightforward proof is relegated to Appendix C.

PROPOSITION 3.1. Fiz a total order < on matchings in
the complete bipartite graph. For a set of edges E, let M (E)
denote the set of matchings on edge set E. Let A be the

Figure 2: Maximum Weight Matching Lowerbound
Circles represent jobs, and squares represent machines.

mechanism that, on input (I, E), finds the <-minimal match-
ing in the set argmax,c s gy 2_;; Tij- Then A is truthful.

Therefore, it suffices to define < so that the <-minimal
maximum-matching on E can be computed in polynomial
time. This gives the following proposition, whose straight-
forward proof is relegated to Appendix C.

PROPOSITION 3.2. There is a polynomial-time, without-
money mechanism for mazximum bipartite matching that is
optimal, and truthful in the private graph model.

3.2 Maximum Weight Bipartite Matching

Next, we consider the MWBM problem, constrained by a
private bipartite graph E. Unlike MBM, we show constant
lower bounds on the approximation ratio of truthful and
truthful in expectation mechanisms.

THEOREM 3.3. No deterministic truthful mechanism with-
out money for MWBM has approzimation ratio better than
2. Moreover, no truthful-in-expectation randomized mecha-

nism gives better than a M% =~ 1.0938 approximation.

ProoOF. First, consider a deterministic mechanism A. As-
sume for a contradiction that A attains an approximation
a < 2. Consider Figure 2(a), where v > 1. Both jobs 1 and
2 prefer machine a to machine b. If we let v be sufficiently
close to 1, A cannot leave either job unassigned. Without
loss of generality, we assume job 1 is assigned to a and job
2 is assigned to b. Now consider job 2 changing his bid as in
Figure 2(b). A cannot assign job 2 at all under these new
bids, as that would violate truthfulness. Therefore, when
given the bids in Figure 2(b), the welfare of the solution
is at most 7, whereas the optimal is v + 1. Letting v be
sufficiently close to 1 gives the contradiction.

Now, we consider an arbitrary truthful-in-expectation mech-
anism A on Figure 2(a). At least one of the jobs must be
assigned to the preferred machine a with probability no more
than 1/2; without loss of generality this is job 2. Job 2 de-
rives value at most (v +1)/2. Now, consider job 2 changing
his bid as in Figure 2(b). By truthfulness, now A can assign
job 2 with probability at most p = (y + 1)/2v. Therefore,
the welfare of the assignment returned on the bids of Figure
2(b) is at most v +1 — (1 —p) -1 = v + p. However, the
optimum is still v+ 1, so the approximation ratio is at least

'y+1: v+1
T+p v+ O+ 1D/

Using elementary calculus, we can choose v to maximize this
expression and complete the proof. [




Therefore, we cannot hope for better than a constant fac-
tor approximation (specifically a PTAS, randomized or de-
terministic, is not possible). We will show a factor 2 deter-
ministic truthful mechanism, matching Theorem 3.3.

Algorithm 1 Mechanism for MWBM on Private Bipartite
Graph
1: Order pairs (i,7) € [n] X [m] in decreasing order of v;j,

breaking ties arbitrarily.
Let X = 0.
for all e € E in the order defined above do

if X |J{e} is a matching then

Let X = X (J{e}

end if
end for
return X

Consider the greedy Algorithm 1. Notice that step (1)
does not depend on the reported edges E.

THEOREM 3.4. Algorithm 1 is a polynomial-time, 2 ap-
proximate, no-money truthful mechanism for maximum weight
bipartite matching in the private graph model.

PrOOF. The approximation ratio immediately follows from
a standard charging argument against the optimal solution.

For truthfulness, consider a job i misrepresenting his true
edges E; as F;. Let E' = E_;|J E.. Let X be the matching
returned by the algorithm on reports E, and let X’ be the
matching returned on reports E’. If X = X’  then i does
not improve his value. Assume X # X', and let ¢/ € E’ be
the first edge in X’ \ X according to the order of step (1).
Since the algorithm processes edges in the bid-independent
order of step (1), it is easy to see that ¢’ € E'\ E = E; \ E;.
Thus, 7 is matched to ¢’ # E;, an edge from which he derives
no value, when he reports E,. This completes the proof. [

4. LP-BASED MECHANISMS FOR KNAP-
SACK TYPE PROBLEMS

The bipartite matching problems studied in the previous
section can be solved in polynomial time; there, the need
for approximation is a result purely of the requirement of
strategyproofness. We now investigate knapsack-like vari-
ants of the GAP — unlike matching, these problems are
NP-hard (in fact, they are APX-hard). The mechanisms we
design have the following common structure: first, we de-
sign a truthful mechanism without money for the fractional
LP relaxation of the problem. Then, as in [14], we use a
randomized procedure to obtain a feasible integral assign-
ment from the fractional solution— this composition leads
to a truthful-in-expectation mechanism without money. We
introduce this technique for designing truthful mechanisms
without money in §4.1, and then use it to design mechanisms
without money for knapsack type assignment problems in
§4.2-§2.1. Some of our analyses will use notions from net-
work flow theory, which we recap in Appendix B.

4.1 A Reduction to Fractional Truthfulness

The construction of Lavi and Swamy allows us to reduce

constructing a truthful-in-expectation mechanism (with money)

for the integral problem to constructing a truthful mecha-
nism for a fractional version of the problem. We redevelop
their construction, in a form convenient for our purposes, in

Appendix A. While the truthful mechanism they construct
for the fractional welfare mazimization problem (defined in
Appendix A) simply solves the problem optimally and uses
VCG payments, we observe that this need not be the case.
Indeed, this is crucial for our purposes; for some of the as-
signment problems we are interested in, the optimal algo-
rithm for the fractional problem requires non-zero payments
for truthfulness. Instead, we sacrifice optimality in the frac-
tional solution to get a truthful fractional mechanism with
zero payments. Then we use the fractional mechanism to
get a scaled down truthful-in-expectation mechanism — also
with zero payments — for the combinatorial problem as in
Theorem A.5.

By examining the proof of Theorem A.5, we notice that
the assumption that the fractional mechanism solves the LP
exactly is not used. In fact, an arbitrary truthful mecha-
nism Myrqc for the fractional problem can be converted to
a truthful-in-expectation mechanism M., for the combina-
torial problem. If My,.qc is a B-approximation algorithm for
the fractional problem, then M, is an « - 8 approximation
algorithm for the combinatorial problem, where « is the inte-
grality gap of the LP relaxation. Moreover, by examing the
proof of Theorem A.5, we notice that the payment scheme
Dexp Of mechanism My, is simply a scaled down copy of
the payment scheme pgrac of Myrqc. In particular, if Myqc
is a truthful mechanism without money for the fractional
problem, then M,y is a truthful-in-expectation mechanism
without money for the combinatorial problem. We sum up
these observations in the following Lemma.

LEMMA 4.1. Assume the fractional welfare maximization
problem over polytope P and valuation class V (as defined
in Appendix A) admits a B-approzimate mechanism that is
truthful without money. Moreover, assume P satisfies the
conditions of Lemma A.4 with integrality gap . Then there
ezists an efficient truthful-in-expectation o - B-approximate
mechanism for the welfare maximization problem over P and
V that does not use money.

In other words, we reduce the problem of designing a
truthful-in-expectation mechanism without money to that
of designing such a mechanism for its fractional relaxation.
This will prove particularly useful, since arguing about truth-
fulness of a continuous fractional assignment algorithm is
more tractable than designing a combinatorial algorithm di-
rectly. Moreover, since the integrality gap of (GAP LP) is
2, an a-approximate mechanism for a fractional assignment
problem gives a 2a-approximate mechanism for the integral
problem. (Recall that the algorithm of [18, 10] shows an
integrality gap of 2 for GAP as needed for Lemma A.4.)

COROLLARY 4.2. Consider any special case of the GAP.
If the fractional version of the problem admits a B3-approximate
mechanism that is truthful without money, then there exists
a 2B-approximate truthful-in-expectation mechanism for the
combinatorial problem without money.

A note is in order on the LP relaxations of the GAP and
various cases used in this reduction. Observe that the LP’s
for the variants of the GAP on a bipartite graph do not fit
the framework of [14]. This is because the valuation — i.e.
the edges — are encoded explicitly in the polytope and not
in the objective. However, this is not a problem for us, since
the equivalent GAP LP does fit the framework. Therefore,



after getting a fractional solution to, say, MKP[E], we can
simply re-interpret it as a fractional solution to (GAP LP)
and perform the reduction of Lavi and Swamy.

4.2 The Multiple Knapsack Problem

We consider the multiple knapsack problem on a private
bipartite graph E. First, we make the simple observation
that, if we ignore computational constraints, there exists
a truthful optimal mechanism for the multiple knapsack
problem in the private graph model. As in maximum (un-
weighted) bipartite matching, simply returning an optimal
solution, breaking ties consistently, leads to a strategyproof
mechanism. The proof is relegated to Appendix C.

PROPOSITION 4.3. Consider the without-money mechanism

that, on reports E C [n] x [m], finds the optimal integral so-
lution to MKP[E] LP, breaking ties consistently via an arbi-
trary total order < on the set of assignments ([m]J {*})™.
This mechanism is truthful in the private graph model.

The above implies that, unlike maximum weight match-
ing and its various generalizations, MKP is not fundamen-
tally incompatible with truthfulness without money — at
least when ignoring computational constraints. Neverthe-
less, MKP on a bipartite graph is APX-hard. Therefore, we
consider the problem of finding a truthful constant-factor
approximation. Though a simple greedy algorithm gives
a deterministic, truthful 2 + ¢ approximation, we will in-
stead illustrate our techniques from Section 4.1 — which will
also come in handy for other generalizations of the GAP
— by designing a randomized, 2-approximate, truthful-in-
expectation mechanism for MKP in our model.

By the discussion in §4.1, it suffices to devise a truthful
fractional algorithm in the sense of Equation (6) of Appendix
A. In this section, we show that solving (MKP[E] LP) op-
timally, with careful tiebreaking, yields such an algorithm.
By Corollary 4.2, this yields a 2-approximate truthful-in-
expectation mechanism for MKP in the private graph model.

Algorithm 2 Fractional Mechanism for MKP on Private
Bipartite Graph

Input: Public instance of MKP, and reported edges E.
Output: A feasible optimal solutlon x for MKP[E] LP
1: Fix an arbitrary order on the edges of the complete bi-
partite graph [n] x [m]. Let < be the lexicographic order
on [R]™*[™] corresponding to the order on edges.
2: Find the optimal solution z to MKP[E] LP, breaking ties
according to <.
3: return =z

Consider Algorithm 2 for the fractional multiple knapsack
problem on a bipartite graph. First of all, it is easy to see
that Algorithm 2 can be implemented in polynomial time by
solving a sequence of linear programs in step (2). In order to
show truthfulness, we will use a flow-based interpretation of
Algorithm 2. For reported edges E, we define graph G[E],
seen in Figure 3, as follows. There is a node for each job,
and a node for each machine. We connect job i to machine j
if (,7) € E, with weight w(; jy = 0 and capacity c(; ;) = oo.
Next, we include a source node s, and create an edge (s, ¢) for
each job i with weight w(,,;y = vi/s; and capacity c(s ;) = si.
We then create a sink ¢ and create an edge (j,t¢) for each
machine j, with weight w(; ) = 0 and capacity c(;) = c;.

D Machine

Q Job 0 Source/Sink

Figure 3: Flow Interpretation of the Multiple Knap-
sack Problem
Edges are labeled with (weight,capacity) pairs.

Finally, we connect the sink to the source via an edge (t, s)
with w(; sy = 0 and capacity c(,s) = oo.

Observe that fractional assignments [0, 1)™*[™) are in one
to one correspondence with feasible circulations in the com-
plete bipartite graph G[[n] x [m]]. Moreover, feasible solu-
tions of MKP[E] LP are in one-to-one correspondence with
feasible circulations in G[E]. In particular, assignment x fea-
sible for MKP[E] LP maps to the unique feasible circulation
fo on G[E] satisfying f2((¢,7)) = wijs: for each job ¢ and
machine j. Notice, also, that the value (i.e. the welfare)
of assignment z is the same as the weight of the circula-
tion f;. Moreover, we define a total order on circulations in
G[[n] x [m]] that corresponds to the lexicographic order <
defined on [R]™*[™ We abuse notation and use < to refer
to both total orders, and let f, < f, if and only if z < y. No-
tice that < also orders feasible circulations lexicographically.
Therefore, we can interpret Algorithm 2 as finding the <-
minimal maximum-weight feasible circulation in G[E], and
then converting it to the corresponding assignment.

Next, we show that Algorithm 2 is a truthful fractional
mechanism, that is, a player ¢ cannot benefit by misrep-
resenting his edges E; as some FE,. For this, if the algo-
rithm returns assignment x when reported edges are FE,
and assignment =’ when reported edges are E' = E_; | Ej,
then we must have z(E;) > z'(E;) (note that this is be-
cause v;; = v; in MKP). Equivalently, we need to show
Ycen, fo(€) = X cp, for(e), where we use the convention
f(e) =0 when f is a flow on G[E] and e ¢ E (and the same
for G[E']).

We will show that any increase in job ¢’s utility after lying
implies that one of f; or f,/ is suboptimal, yielding a contra-
diction. We will use notions from network flow, developed
in Appendix B. We begin with the following Lemma.

LEMMA 4.4. Let circulation A be the difference between
for and fo;ie. A= for—fo If3 cp for(€) > X ocp, fa(e)
then A can be conformally decomposed into {C, A — C'} where:
(1) C is a flow cycle, and (2) C sends positive flow on both
(s,i) and some e € E; () Ej.

PRrROOF. Let {6’17 .. .,Ck} be the conformal decomposi-



tion of A into cycles as in theorem B.6. It suffices to show
that some C? satisfies conditions (1) and (2).

Since z’ sends more flow on edges in E; than x, some
CY enters 4 through an edge e’ ¢ E;, and exits through an
edge e € E;. By conformality and the fact that =’ sends no
flow on E; \ E;, we know that e € E; [ E;. Moreover, by
conformality and the fact that x sends no flow on edges in
Ej\ E;, it is easy to see that ¢/ ¢ E;\ E. Therefore, the
only remaining possibility is that ' = (s,7). [

This yields truthfulness of the algorithm.

LEMMA 4.5. Algorithm 2 is a truthful fractional mecha-
nism

PROOF. Fix an instance (I, E), and assume for a contra-
diction that a player ¢ with true edges E; benefits by report-
ing E; instead. Let z and 2’ be the assignments computed
by the algorithm on reports E and E' = E_;|J E;. By as-
sumption, 3 . p for(€) > > cp, fa(e). Let A and C be as
in Lemma 4.4. Observe that C' does not send flow on any
edges in the symmetric difference of E; and E;. Therefore,
by Lemma B.7 f, 4+ C is a feasible circulation in G[E], and
moreoever f, — C is a feasible circulation in G[E’]. If the
weight w(C) of circulation C'is non-zero, then one of f; or
S 18 non-optimal. Therefore, w(C) = 0. Now notice that,
by definition of <, either f, + C < fy or for — C < fur.
Therefore, one of f; or f,/ is not a <-minimal optimal solu-
tion, yielding the contradiction. []

Combining with Corollary 4.2, we get the following theorem.

THEOREM 4.6. There is a polynomial-time, 2-approximate,
without-money mechanism for the multiple knapsack prob-
lem that is truthful-in-expectation in the private graph model.

4.3 Size-lnvariant cap

‘We consider the size-invariant generalized assignment prob-
lem on a private bipartite graph E. Since SIGAP gener-
alizes MWBM, by Theorem 3.3 no deterministic truthful
approximation can achieve better than a factor 2 approx-
imation, and moreover no truthful in expectation PTAS is
possible. In this section, we devise a 4-approximate without-
money mechanism for SIGAP that is truthful-in-expectation
in the private graph model. Even though solving SIGAP[E]
LP is not fractionally truthful (again, by Theorem 3.3), we
show that a simple greedy algorithm is fractionally truthful
and yields a 2-approximate solution the LP. Combining this
with Corollary 4.2, we get a 4-approximate, without-money
mechanism for SIGAP that is truthful in expectation in the
private graph model. Consider the following algorithm.

First, we bound the approximation factor of Algorithm 3.

LEMMA 4.7. Algorithm 3 returns a 2-approximate solu-
tion to SIGAP[E] LP.

PrOOF. This can be shown by a charging argument, best
formalized by constructing a feasible solution to a dual of
SIGAP[E] LP of value at most twice the value attained by
the algorithm. This dual is shown below, and has decision
variables u € R™ and z € R™:

minimize Y71, ui + 3070, ¢z

subject to  u; + siz; > vij, for (4,7) € E.
u; > 0, fori=1,...,n.
zj >0, forj=1,...,m.

(SIGAP[E] LPD)

Algorithm 3 Fractional Mechanism for SIGAP on Private
Bipartite Graph

Input: Public instance of SIGAP, and solicited private
edges F.

Output A feasible solution x for SIGAP[E] LP

: Order [n] x [m} in decreasing order of value density de,

where d; ;) = %, breaking ties arbitrarily.

: for all (4,j) € E in the order defined above do
Fractionally assign as much of job i on machine j,
until the job is exhausted or the machine is full.

end for

5: return the resulting assignment x.

=

W N

=

First, we make a simple observation about the algorithm
that will be useful in the proof.

OBSERVATION 4.8. For a job i, edges incident on i are
examined in decreasing order of vi; (since size s; is inde-
pendent of the machine). For a machine j, edges incident
on j are examined in decreasing order of vi;/s;.

We now construct the dual solution u, z in parallel with the
execution of the algorithm as follows. Begin with © = 0 and
z = 0. Consider the iteration of Algorithm 3 corresponding
to edge e = (i,7). If job 7 is exhausted on this iteration, set
u; = v;j. If the capacity on machine j is exhausted on this
iteration, set z; = v;;/s;. Notice that, in both cases, this
satisfies the dual constraint corresponding to edge (,7). If
no assignment is made on this iteration — i.e. either ¢ or
j was exhausted in a previous iteration — then we do not
update the dual variables. Indeed, there is no need to do so
for feasibility: By Observation 4.8, if ¢ is already exhausted
then already w; > v;j;, and if j is already exhausted then
already z; > v;;/s;, and either suffices to satisfy the dual
constraint for edge e.

It remains to bound the value of the dual solution as com-
pared to the primal solution. First, we write twice the value
of the primal in a convenient form:

2EUijZEij = ZZU”-’E” +EZ (sizij)
2%

Observe that, by Observation 4.8, u; lower-bounds the
value of any edge on which any part of job i is assigned, and
z; lower-bounds the density of any job assigned to machine
j. Moreover, u; is non-zero only if ¢ is fully assigned, and z;
is non-zero only if j is full. Therefore, we get

Do vty Y %(sixij)

i ] . i K3
> ZUZZQU” +szz slx”
= ZulJrZz]c]

The final term is precisely the value of the dual. Invoking
weak LP duality completes the proof. []

It remains to show that Algorithm 3 is fractionally truth-
ful. We begin with an observation.

OBSERVATION 4.9. Let e1,...,enm be the ordering [n] X
[m] in decreasing order of density vij/si. Let < denote the

lexicographic ordering on RM* - Algorithm 3 returns the
<-mazimal feasible solution of SIGAP[E] LP.
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Figure 4: Flow Interpretation of the Size-invariant
Generalized Assignment Problem
Edges are labeled with (weight,capacity) pairs.

As in section 4.2, we use a network flow interpretation.
We define graph G[E] for E C [n] x [m]. This construction
is similar to that of §4.2, and the graph is shown in Figure
4. As in §4.2, feasible assignments for SIGAP[E] LP are in
one-to-one correspondence with feasible circulations in G[E].
We can similarly define an order < on flows in G[[n] x [m]]
by setting f» < fy when x < y. Therefore, we can interpret
Algorithm 3 as finding the <-maximal feasible circulation
in G[E]. Next, we establish a decomposition lemma similar
to, yet more involved than, Lemma 4.4.

LEMMA 4.10. Let = be the output assignment of Algo-
rithm 8 with declarations E, and let 2’ be the output as-
signment with declarations E' = E_; UE{ Let circulation
A be the difference between fpr and fr; i.e. A = for — fa.

If Y cp, wefur () > 3 cp, wefz(e) then A can be confor-
mally decomposed into {C, A — C} where:

1. C is a flow cycle

2. C'<0. In other words, adding C' to any other circula-
tion worsens the lexicographic order.

3. C enters i through some e € E; \ Ej, with C(e) < 0.
4. C exits i through some ¢’ € E;( E;, with C(e’) > 0.
5. Wer > We.

ProOF. Consider the conformal decomposition of A into
cycles C',...,C*. Tt suffices to show that some C7 satis-
fies the conditions above. By assumption, there is a cycle C'
in the decomposition with 3° . weC(e) > 0. By confor-
mality, cycle C' must exit ¢ through an edge ¢’ € E; ) E;.
Moreover C' cannot enter through an edge in both graphs
G[E] and G[E']: if it did, then both f, + C and f,, — C
are feasible in G[E] and G[E'] respectively, and thus one of
them is not lexigographically maximal, contradicting obser-
vation 4.9. Therefore, by conformality, C' must remove flow
from an edge e € F; \ E}, and add flow to ¢’ € E; () E;, with
wer > we. Thus, C satisfies conditions 1, 3, 4, and 5.

It remains to establish condition 2. Observe that f, +C'is
a feasible circulation on G[E]. Since f; is a lexicographically
maximal feasible circulation on G[E], we deduce C < 0. [

We are now ready to show truthfulness.

LEMMA 4.11. Algorithm 3 is a truthful fractional mech-
anism for SIGAP.

PRrROOF. Assume, for a contradiction, that a player i ben-
efits by reporting E; instead of his true edges F;. Let x and
2’ be the assignments computed by the algorithm on reports
E and E' = E_;|J E;. By assumption, Y cem, Wefw(e) >
> cen, Wefz(e). Let A and C be as in Lemma 4.10.

Recall that C' < 0. Thus, if f,» — C were feasible in G[E’]
we would be done, as we would contradict Observation 4.9.
However, this is not the case, as f,» — C sends positive flow
on edge e € E; \ E;. We remedy this by simply zeroing out
the flow on edge e = (3,7), as follows: Let D be the flow
cycle through s,1,j,t such that f,, — C — D sends no flow
on e. It is clear that f, — C' — D is a feasible circulation on
G[E']. We claim that still f, —C — D = f,/. To see this,
notice that by condition 5 of Lemma 4.10, edge e is not the
greatest weight edge with non-zero flow in —C'. Thus, since
—C = 0, it is easy to see that also —C' — D > 0. Therefore
for —C — D > fur, as needed. [J

Combining with Corollary 4.2, we get the Theorem.

THEOREM 4.12. There is a polynomial-time, 4 approxi-
mate, without-money mechanism for the size-invariant gen-
eralized assignment problem that is truthful-in-expectation in
the private graph model.

4.4 vIGAP and GAP

In this section, we overview the results that we obtain
for VIGAP and GAP, utilizing the techniques developed in
§4.1-4.3. However, since these differ from our results so far
only technically, we defer details to the full version of the
paper.

Consider the VIGAP. We observe that Proposition 4.3
holds essentially unchanged; that is, solving VIGAP op-
timally gives a truthful mechanism in our model. Next,
we observe that greedy Algorithm 3, when adapted to the
fractional VIGAP (namely, density d; ;) is now defined as
vi/sij), still provides a 2-approximation by essentially the
same analysis. An more involved inductive argument is
needed to show that this fractional algorithm is truthful;
We defer this technical, yet simple, proof to the full version
of the paper. We get the following theorem.

THEOREM 4.13. There is a polynomial-time, 4 approxi-
mate, without-money mechanism for the value-invariant gen-
eralized assignment problem that is truthful-in-expectation in
the private graph model.

We now turn to the GAP. First, we make an assumption
— to be removed later — that the maximum value vmyqe Of
an edge in E is publicly known up-front. Under this as-
sumption, we can reduce the design of a truthful mechanism
for GAP to the truthful mechanism for VIGAP with a loss
of O(logn) in the approximation ratio. In particular, we

, 70”(‘232"» }, and de-

fine a new value v;; for each item 4 and bin j as follows: If
v; > v then U;; = v, else U;; = 0 (equivalently, we discard
edge (7,7)). This gives an instance of VIGAP that we can
solve using the mechanism of Theorem 4.13. It is easy to
verify that, in expectation, this reduction results in a loss

v Ymax Ymax
max,; o 3 4 9

randomly pick v €



of at most O(logn) in the approximation ratio. However,
to ensure truthfulness we need to guarantee that edge (i, )
actually results in value exactly v;; if chosen; we do so by
positing up-front that, whenever job i is assigned to ma-
chine j by the subroutine that solves VIGAP, we cancel i’s
assignment with probability 1 — ¥;;/v;;. It is now easy to
see that, under our original assumption that vmax is known
up-front, this mechanism is truthful-in-expectation and has
an approximation ratio of O(logn).

We now remove the assumption that vmqe is public knowl-
edge by appropriately incentivizing the job with the maxi-
mum value edge. In particular, after receiving the reported
edges F, we flip a fair coin. If the coin turns up heads, we
assign the job with the maximum value edge on that edge
(i.e.to his favorite machine, with value vmax), and leave all
other jobs unassigned. If the coin turns up tails, we discard
the job with the maximum value edge, and proceed with
the algorithm described above using this value of vpaz. It
is easy to see that this is still an O(logn) approximation
algorithm. Moreover, the job with the maximum value edge
can do no better than report his true edges, and no job has
incentive to falsely claim a maximum value edge. This gives
the following Theorem.

THEOREM 4.14. There is a polynomial-time, O(logn) ap-
proximate, without-money mechanism for the generalized as-
signment problem that is truthful-in-expectation in the pri-
vate graph model.

We leave open the question of whether there exists a con-
stant factor truthful [in expectation] mechanism without
money for the GAP in our model.
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APPENDIX

A. THE CONSTRUCTION OF LAVI AND
SWAMY

First, we recall some basic concepts from combinatorial
optimization, and state the key lemma in the construction
of Lavi and Swamy.

DEFINITION A.1. Let P C R? be a polytope. We define
the Integer hull of P, which we denote by I(P), as the convex
hull of all integer points in P. Equivalently,

I(P) = hull(P () Z*)

DEFINITION A.2. Let P be a polytope. The integrality
gap of P is defined as:

max{c’z:z € P}
max
cerd max{cTz : z € I(P)}

Note that the integrality gap of a polytope does not de-
pend on any particular set of objectives c¢. In fact, even
in problems where the only objectives of interest are of a
certain class — say submodular valuations as used in combi-
natorial auctions, or objectives c in the nonnegative orthant
— the construction of Lavi and Swamy can only perform as
well as the integrality gap of the polytope as a whole, as
defined above.

DEFINITION A.3. We say an algorithm shows an integral-
ity gap of a for a polytope P C R? if it takes as input an
arbitrary vector ¢ € R, and outputs a point z € PN 7 with
the guarantee that:

1
¢z > —max{cr:z € P}
a

The construction of Lavi and Swamy concerns packing
polytopes. A polytope P C R? is a packing polytope if it
is contained in the positive orthant — i.e. P C R+? — and
moreover it is downwards closed: if y € P and € R+? is
such that z < y (component-wise) then = € P.

Now, we come to the key lemma. We consider a packing
polytope P, and use P/« to denote the scaled down copy of
P —ie. P/a={y/a:y € P}. Using an algorithm showing
the integrality gap of a for P, we can explicitly construct for
every © € P/« a distribution over integer points of P that
evaluates to = in expectation.

LEMMA A.4  ([14]). Let P be a packing polytope of in-
tegrality gap at most «. Then, for every x € P/a there
exists a distribution D, over P(Z% such that Ey~p,y = .
Moreover, if there exists a polynomial-time algorithm B that
shows an integrality gap of o for P, then, for any © € P/«
we can compute Dy in polynomial time.

Armed with the above lemma, Lavi and Swamy reduce de-
signing a truthful-in-expectation mechanism (with money)

to designing a truthful fractional mechanism (also with money),

to be defined later.

We illustrate the technique of Lavi and Swamy by consid-
ering welfare maximization problems in a very general form.
Let P C R+ be a packing polytope representing the set of
feasible solutions. Moreover, assume that there are n players
[n], and the valuation function v; : R* — R of player i is re-

d
quired to lie in some valid set of linear valuations V; C R¥".

We denote V =V X V... X V,. The combinatorial welfare
mazimization problem (henceforth CWMP) over P and V
is the problem of finding an integer point in P maximizing
the sum of values of the players. This gives the following
LP relaxation, which we refer to as the fractional welfare
mazimization problem (henceforth FWMP):

maximize ), vi(z)
subject to z € P

We define a truthful-in-expectation mechanism for the com-
binatorial welfare maximization problem as a pair M =
(f,p) where f: V — PN Z% is a randomized allocation rule,
and p: V — R" is a randomized payment scheme. As usual,
we say M is truthful in expectation if the following holds
for each € V and v; € V;

E[vi(f(v)) = (p(0))i] = E[vi(f(v-,v1)) — (p(v,v))il- ()

Moreover, we define a fractional mechanism as a pair M =
(f,p) where f :V — P is a fractional allocation rule, and
p:V — R" is a payment scheme. We say M is a truthful
fractional mechanism if the following holds for each ¥ € V
and v; € V;

vi(f(v) = (p(v))i = vi(f(v—i,v)) = (p(v,v)))i-  (6)

It is easy to see that we can use the VCG mechanism to
obtain a truthful fractional mechanism My, for the frac-
tional welfare maximization problem. Moreover, when opti-
mizing objectives in V over P can be done efficiently, My,.qc
is a polynomial time mechanism. Lavi and Swamy observed
that, given an efficient approximation algorithm that shows
the integrality gap of P in the sense defined above, one
can obtain a polynomial-time, truthful-in-expectation mech-
anism M.z, that looks simply like a scaled down version of
Myrqc. This follows from lemma A.4. We state the main
theorem of Lavi and Swamy and sketch its proof below.

THEOREM A.5 ([14]). Assume the fractional welfare maz-
imization problem can be solved efficiently for any valua-
tions in V. Moreover, assume P satisfies the conditions of
Lemma A.4 with integrality gap o and algorithm B showing
the integrality gap. Then there exists an efficient truthful-in-
expectation a-approrimate mechanism for the welfare maxi-
mization problem over P and V.

Proor SKETCH. Consider the efficient, truthful fractional
mechanism Mfrac = (ffrac, Pfrac) constructed using VCG.
We will define Megp = (fewp; Pexp) as follows. We let peyp(v) =
%, and let fezp(v) be drawn from the distribution fomc(v)/m
as defined in Lemma A.4. The random function fe;, can be
evaluated efficiently using B, as in the lemma. Now, us-
ing linearity of expectations, the linearity of the valuation
functions, and Lemma A .4, it is easy to show truthfulness of
Mezp by showing that the expected valuation less the pay-
ment of a player matches that of My,4c up to a scaling factor

of a.
E[vi(feap(v')) = (Peap(v'))i] = vi(E[feap(v")]) = (pewp(v')):
(5 frrac®)) =

: [vi(ffraC(vl)) - (pfraC(vl))i]

L
«

(Dfrac(v’))i



Applying this equivalence to both sides of inequality (6)
yields truthfulness of Me,p. [

It is worth noting that a simple modification to p allows us to
guarantee individual rationality, while preserving truthfulness-
in-expectation. However, this will not be relevant for our
purposes, as all our mechanisms will utilize no payments.

B. NETWORK FLOW PRELIMINARIES

Here we recall some notions from network flow theory, and
define simple concepts that we will need in analysis of our
algorithms for MKP and SIGAP.

We recall that a weighted-capacitated directed graph is a
directed graph G = (V, E), with a weight w. € R and
capacity c. € RT on an edge e. We define a flow simply as
follows.

DEFINITION B.1. A flow is a vector f € RF(),
We distinguish circulations on G as follows.

DEFINITION B.2. A flow f € RF(Y s g circulation if it
conserves flow on each vertex. In particular, for each v € V
with incoming edges I'™(v) and outgoing edges I'" (v), we
have:

Yo ofley= > fle

ecl'— (v) ecl't (v)

We define the weight of circulation f as follows: w(f) =
> cen(c) Wef(e). Note that we allow a circulation to send
negative flow on an edge, as well as overflow the capacity of
an edge. A feasible circulation is better behaved.

DEFINITION B.3. A vector f € RE(®) s ¢ feasible circu-
lation if it is a circulation, and moreover it satisfies nonneg-
ativity and capacity constraints. In particular, for each edge
e we have:

0<f(e) <ce

We distinguish the simplest circulations, or flow cycles,
and recall that every circulation can be decomposed into
cycles that are oriented consistently.

DEFINITION B.4  (FLow CYCLE). A circulation C on G
is a flow cycle if there exists a simple undirected cycle H
such that C' sends non-zero flow only on edges of H.

DEFINITION B.5 (CONFORMAL DECOMPOSITION). Fiz a
circulation f. We say a set of circulations {gl, e ,gk} is a
conformal decomposition of f if the following hold

1. (Decomposition) f = Zle g
2. (Conformal) For each e € E(G), f(e) - g'(e) > 0.

Note that every g¢° in the conformal decomposition must
send flow in the same direction as f on each edge.

THEOREM B.6  ([6]). Ewvery circulation f can be confor-
mally decomposed into flow cycles.

Conformal decomposition immediately yields a useful prop-
erty of feasible circulations.

LEMMA B.7. Let f and f' be feasible circulations on G.
Let Cy,...,Ck be a conformal decomposition into cycles of
f' = f. Then, for every L C {1,...,k} the circulation f +
> ier Ci is feasible. Equivalently, for every L C {1,...,k}
the circulation f' — > e Ci is feasible.

In other words, the cycles of the conformal decomposition
of f/ — f may be added to f (or subtracted from f’) in any
order, maintaining feasibility along the way.

C. OMITTED PROOFS
C.1 Section 3 Proofs

PRrROOF OF PROPOSITION 3.1. Assume for a contradiction
that A is not truthful. Then, there exists I and E =
(E—i, E;) and Ej violating (3). Let x = A(I,E) and z’ =
A(I,E"), where E' = E_;|J E;. Job i is not matched by
an edge in E; in z, yet is matched by an edge in F; in .
Since A only uses reported edges, ¢ is not matched at all
in z, yet is matched by an edge e € E;()E; in z’. This
implies that both z and z’ are in M(E) () M(E"). Observe
that Zij Tij =24 xéj, otherwise either x is not optimal in
M(E), or 2’ is not optimal in M (E"), contradicting the def-
inition of A. Therefore, both z and z’ are optimal in both
M(E) and M(E"). Recalling that algorithm A breaks ties
consistently, this yields a contradiction, as needed. [

PrOOF OF PROPOSITION 3.2. We represent each match-

ing as a binary vector (11, Z12, ..., %21, ¥22, . . ., Tnm) in {0, 1},

and let < be the lexicographic order on these vectors. Then
we proceed to find the <-minimal maximum matching as
follows. We compute the size OPT of the maximum match-
ing (this can be done in polynomial time). We then process
edges in the order they appear in the vector representation,
while maintaining a working set of edges X initialized to E.
When processing an edge e, we check if removing e decreases
the size of the maximum matching in X by solving the prob-
lem on edges X \ e. If so we keep e in X, else we discard
e by setting X = X \ e. When finished, X is a maximum
matching; it is easy to see that X is <-minimal among all
maximum matchings. [

C.2 Section 4 Proofs

PRrROOF OF PROPOSITION 4.3. Fix a player ¢ with true edges
FE;, and fix the reported edges FE_; of the other players. Let
x be the assignment on reports F = (E;, E_;), and let z’
be the assignment on reports E' = (E}, E_;). Assume for a
contradiction that truthfulness is violated, in particular that
x(i) = *, yet 2’ (i) = j for some machine j where (4, j) € E;.

Recall that x is the optimal feasible solution for MKP[E],
and ' is the optimal feasible solution for MKP[E']. Since i
is unassigned in x, we know that z is feasible for MKP[E']
as well. Moreover, since 2’ assigns 4 using an edge in E, we
know z’ is feasible for MKP[E]. We conclude that each of
x and 2’ is feasible and optimal for MKP[E] and MKP[E'].
This contradicts the consistent tie-breaking of the mecha-
nism. [J



