
A Market Clearing Solution for Social Lending

Ning Chen† Arpita Ghosh‡

†Division of Mathematical Sciences, Nanyang TechnologicalUniversity, Singapore.
ningc@ntu.edu.sg

‡Yahoo! Research, Santa Clara, CA, USA.
arpita@yahoo-inc.com

Abstract

The social lending market, with over a billion dol-
lars in loans, is a two-sided matching market where
borrowers specify demands and lenders specify to-
tal budgets and their desired interest rates from each
acceptable borrower. Because different borrowers
correspond to different risk-return profiles, lenders
have preferences over acceptable borrowers; a bor-
rower prefers lenders in order of the interest rates
they offer to her. We investigate the question of
what is a computationally feasible, ‘good’, alloca-
tion to clear this market.
We design a strongly polynomial time algorithm
for computing a Pareto-efficient stable outcome in
a two-sided many-to-many matching market with
indifferences, and use this to compute an allocation
for the social lending market that satisfies the prop-
erties of stability — a standard notion of fairness
in two-sided matching markets — and Pareto ef-
ficiency; and additionally addresses envy-freeness
amongst similar borrowers and risk diversification
for lenders.

1 Introduction
Social lending, or peer-to-peer lending, which allows individ-
uals to lend and borrow money to each other directly without
the participation of banks, is an exploding business on the In-
ternet: the total amount of money borrowed using such peer-
to-peer loans was approximately$650 million in 2007, and is
projected to reach$5.8 billion by 2010.

The social lending market consists of borrowers seeking
some target loan amount (their demand), and lenders seeking
to invest some fixed amount of money in loans (their bud-
get). Lenders usually prefer to invest their budget in multi-
ple borrowers’ loans to spread risk from defaulting borrow-
ers, and each borrower’s loan is also usually funded by mul-
tiple lenders. Borrowers are ‘non-homogeneous’ — different
borrowers have different characteristics such as credit rating
and desired loan length, and command different interest rates
based on their creditworthiness. That is, different borrowers
correspond to investments with different risk-return profiles.
As a result, lenders havepreferencesover which borrowers

they would like to lend their money to — one lender may pre-
fer high-risk-high-return borrowers, while another may pre-
fer safe borrowers albeit fetching lower interest rates. On
the other hand, borrowers also have implicit preferences over
lenders since different lenders can offer different interest rates
to the same borrower: a borrower simply prefers the lenders
who offer him the lowest rate.

We now have a large two-sided matching market where
agents on both sides have multiunit capacities, and prefer-
ences — lenders have preference rankings (possibly with ties)
over the set of acceptable borrowers they’re willing to lendto,
and borrowers have preferences over lenders based on their
offered interest rates. But the preferences of all these agents
may be conflicting — many lenders may compete to lend to
the same borrower who is their common top choice, while this
borrower’s preference might be an entirely different lender
who offers him a lower interest rate, who in turn has a dif-
ferent top borrower choice. Clearly, it need not be possible
to make all agents simultaneously happy, raising the natural
question of what constitutes a ‘good’ assignment. In this pa-
per, we investigate the social lending market from a compu-
tational social choice perspective: what is a fair and efficient
way to clear this marketplace, and how can it be computed?

Our contributions. We present a model (§2) for the social
lending marketplace based on Zopa (www.zopa.com), which,
with over400, 000 members and£100 million in its markets
and over£100000 tradedeach day, is the first and among the
largest social lending sites on the Web.

We first address the question of what is a desirable allo-
cation in the social lending market in§3, and argue that an
allocation that is stable, Pareto efficient, fair amongst ‘equal’
borrowers, and also addresses the need for risk diversification
to reduce default risk is a desirable solution concept in this
market. We then address the question of finding an algorithm
that returns such an allocation in§4.

When preference lists contain ties, as in our social lend-
ing context, not all stable matchings are Pareto efficient.
The question of how to find a Pareto-stable matching when
preferences contain ties has recently been addressed for the
many-to-one matchingmodel in [Erdil and Ergin, 2008;
2009]. A naive adaptation of this algorithm to ourmany-to-
manymarket returns a Pareto-stable assignment in time that
scales with the total capacity of all nodes in the graph,i.e.,
the amount of money traded in the market, requiring us to de-

velop a new algorithmic approach. We design a strongly poly-
nomial time algorithm for computing a Pareto-stable outcome
in a many-to-many matching market with indifferences, and
apply it to a reduced marketplace where ‘identical’ borrowers
are grouped into equivalent classes or ‘categories’; we then
reallocate amongst categories to achieve fairness amongst
borrowers and risk diversification. The overall runtime is
polynomial in the number of lenders and the number of bor-
rower categories, which is a small constant (=10) for the Zopa
marketplace.

Related work. Social lending is a relatively new application
that has only recently begun to be addressed in the research
literature, starting with the work in[Freedman and Jin, 2009]
on default rates. Most of the research on social lending takes
an empirical approach as in[Freedman and Jin, 2009]; [Chen
et al., 2009] analyzes the auction held for a single borrower’s
loan in the Prosper market, but does not address the several
coexisting lenders and borrowers in the marketplace. To the
best of our knowledge, social lending has not been studied
much from a marketplace design or social choice perspective.

There is a very vast literature on two-sided matching mar-
kets and stable matching; for a review of the economics
literature on the subject, see[Roth and Sotomayor, 1992;
Roth, 2008]; for an introduction to the computer science
literature addressing algorithmic and computational ques-
tions, see, e.g., [Gusfield and Irving, 1989; Iwama and
Miyazaki, 2008]. The paper most relevant to our work
from the stable matching literature is[Erdil and Ergin, 2008;
2009], who study the algorithmic question of finding Pareto-
stable matchings for amany-to-onematching market; see§4.
The many-to-many setting is far less well studied in the sta-
ble matching literature, and focuses largely on structuralre-
sults in settings without indifferences; see, e.g.,[Hatfield and
Kominers, 2010; Echenique and Oviedo, 2006].

2 A Lending Market Model
We model the social lending marketplaceM as a bipartite
graph with nodes(A,B) and edgesE. The nodes inA repre-
sent the lenders and the nodes inB are the borrowers. Nodes
on both sides have multiunit capacities: a lenderi’s capac-
ity ci is her budget, the total amount of money she wants to
lend. A borrowerj’s capacitycj is his demand, the total loan
amount he wants to borrow. We will assume that the capac-
ities are integers by expressing them in the smallest unit of
currency. The edge setE of M is the set of pairs(i, j) where
lenderi is willing to lend to borrowerj.

Each lender specifies the interest rates at which she is will-
ing to lend money to different acceptable borrowers; as in
Zopa, this is the actual interest-rate that she will receiveon
any loans to that borrower. Note that each lender can offer
different interest rates to different borrowers, and the same
borrower can be offered different interest rates by different
lenders.

Every acceptable borrower, along with the specified inter-
est rate, represents a possible investment for the lender, with a
particular risk-return profile. Each lender has apreferencelist
Pi ranking the investments corresponding to these borrower-
interest rate pairs,i.e., its neighbors{j ∈ B : (i, j) ∈ E}.

These preferences need not be strict and the lender can be
indifferent between,i.e., equally prefer, two different invest-
ments; that is, preference lists can have ties. Since the pref-
erence list is restricted toi’s neighbors (i.e., acceptable bor-
rowers), it is naturally incomplete. (As an example, lenderi’s
preferences, denotedPi = ([j1, j2], [j3, j4, j5]), could be as
follows: i is indifferent betweenj1 andj2, and prefers both
of them toj3, j4, j5 among all of whomi is indifferent; she
finds all other borrowers unacceptable.) In general, a lender
can also have preferences over sets of investments; however,
here we will restrict ourselves to expressing preferences over
individual investments for simplicity1.

Each borrowerj has an implicitpreferencerankingPj over
lenders based on the interest rates they offer him:j prefers
lenders in non-increasing order of offered interest rates,and is
indifferent amongst lenders who offer him the same interest-
rate (so borrowers’ preferencesPj can contain ties as well).

We partition the set of borrowers into equivalence classes,
or categoriesC = {C1, . . . , Cm}: two borrowers are equiva-
lent, i.e., belong to the same category, if no lender can dis-
tinguish between them based on the information available
about them in the marketplace. Thus, all lenders are indif-
ferent between the borrowers in a category, and offer them
the same interest-rate. This also means that borrowers in a
category all have the same preferences over lenders, and that
a lender’s preference list need only rank categories, not indi-
vidual borrowers. The number of categories can be as large as
the number of borrowers whenpersonalinformation is pro-
vided by/about each borrower (as in Prosper), or very small
when the only information revealed is the credit-rating and
loan length (as in Zopa, which only allows lenders to specify
interest rates for 10 borrower categories).

Diversification to decrease default risk is a very important
factor in social lending. Instead of modeling this into the pref-
erences of lenders, we deal with it as Zopa— Zopa breaks up
each lender’s budget into small sums each of which is lent
to a different borrower to diversify risk, so we will similarly
ensure that each lender’s budget is uniformly spread amongst
many different borrowers in the final allocation.

We note that we do not model reserve rates, nor the dy-
namic aspect of the social lending market in this work.

Feasible assignments.The output of the market is a multi-
unit pairing, orassignmentX = (xij)(i,j)∈E betweenA and
B, wherexij ∈ N∪{0} is the number of units assigned from
i ∈ A to j ∈ B (whenci = cj = 1 for all nodes, an assign-
ment reduces to amatching). An assignmentX is feasible
if it simply satisfies capacity constraints on both sides,i.e.,
∑

j xij ≤ ci and
∑

i xij ≤ cj . Note that the preferences
Pi, Pj do not matter to the feasibility of an assignment.

3 What Is a Good Outcome?
Having defined the set of feasible assignments, how do we
choose one from amongst the very large number of possible
assignments? An ideal solution concept for the social lending
market would be Pareto efficient, fair — both across lenders

1This is both for technical tractability and to avoid eliciting com-
plex combinatorial preferences from lenders.

and borrowers, as well as amongst similar borrowers —ex-
ist for every instance of the input, and be efficiently com-
putable (since social lending markets transact huge amounts
of money, it should be implementable in time that depends
only on the number of agents, not on the money being traded
in the marketplace). What assignment has these properties?

A very widely used solution concept in two-sided matching
markets is that ofstability [Gale and Shapley, 1962]: there
is no pair of individuals thatboth strictly prefer each other
to some partner they are currently assigned to (such a pair
would be called a blocking pair). Stability can be interpreted
as a notion of fairness in our context — while it is not possi-
ble to guarantee each lender her most preferred allocation,a
stable allocation is fair in the sense that if a lender indeed
sees a better allocation, that allocation does not also ‘pre-
fer’ her in return. However, when preference lists contain
ties as in our case, it is well-known that stable matchings
need not bePareto efficient, even when all nodes have unit
capacity [Roth and Sotomayor, 1992], as the following ex-
ample shows.2 Therefore, we will need to explicitly require
that the solution is both stable and Pareto efficient; such as-
signments are calledPareto-stableassignments[Sotomayor,
2009]. However, as the next example shows, applying the
concept of Pareto stability directly to the marketplaceM may
not produce very desirable solutions: a solution may well be
Pareto-stable, but hand out very different interest rates to two
identical borrowers, violating our fairness requirement.

Example 3.1. There are two lendersi1, i2 and two borrowers
j1, j2 with two units of supply/demand each. Both lenders
are indifferent between the two borrowers; the first lenderi1
offers 7% to both borrowers, and the second lenderi2 offers
15% to both borrowers. The matching wherei1 lends both
units toj1 (at 7%), andi2 lends both units toj2 (at 15%) is
stable and also Pareto efficient. However, the matching where
both lenders lend one unit to each borrower is also Pareto-
stable and ‘more fair’ since bothj1 andj2 get equal amounts
of the low and high interest rates (note that this matching does
not Pareto-improve the previous matching since it makesj1
strictly worse off). In addition, each lender spreads her loan
across more borrowers, so diversity improves as well.

This example illustrates that we cannot simply apply the
solution concept of Pareto stability directly to the sociallend-
ing marketplaceM . Instead, we will consider a modified
market, where the lender side is unchanged but borrowers
are aggregated by category into ‘meta-borrowers’, with de-
mand equal to the aggregate demand of that category (re-
call that a category can consist of a single borrower, when
there is plenty of information about borrowers in the market-
place). We will first find a Pareto-stable assignment in this
reducedmarketplace— how to find such an assignment is the
key technical problem we need to solve— and then distribute
each lender’s allocation to a meta-borrower amongst all the
borrowers in that category to ensure envy-freeness amongst

2A simple example consists of two men and two women, where
i1 strictly prefersj1 to j2, but all other nodes are indifferent amongst
their possible partners. The matching(i1, j2), (i2, j1) is stable, but
not Pareto efficient sincei1 can be reassigned toj1 and i2 to j2
without making anyone worse off.

them.
We note that another natural solution concept, maximum

size assignment (i.e., the one with the largest trade volume),
is unsuitable here since it ignores all agents’ preferences;
the maximum-sizestableassignment is NP-hard to compute
[Iwamaet al., 1999]. However, it is easy to show that the size
of any stable assignment (and therefore also our assignment)
is at least half the size of the maximum size assignment.

The assignment we propose to clear the social lending mar-
ket is the following.

MARKET CLEARING ASSIGNMENT: Given a lending market
M = (A, B) with categoriesC = {C1, . . . , Cm}:

1. Create a meta-borrower for each categoryCr with demand
∑

j∈Cr
cj , and the same preferences as those of borrow-

ers inCr. Denote the resulting market by(A, C).

2. Compute a Pareto-stable assignmentX∗ = (x∗

iCr
) for

(A, C), wherex∗

iCr
is lenderi’s total investment in cate-

goryCr (§4).

3. Assign each lender’s investmentx∗

iCr
across all borrow-

ers in categoryCr to ensure diversity and envy-freeness;
denote the final assignment byY = (yij) (§4).

We have the following result about this assignment.

Theorem 3.2(Main). The final assignmentY = (yij) can
be computed in timeO(|A|4 + |A||B|) and has the following
properties:

1. Stability: There are no blocking pairs in the original
marketplaceM = (A,B).

2. Pareto efficiency: No agent inM can be made better off
without making some other agent inM strictly worse off.

3. (Weak) envy-freeness: No borrower envies the allocation
of any other borrower in its category.

4. Diversity: Given the allocationsX∗ = (x∗
iCr

), each
lenderi spreads her budget amongst the maximum num-
ber of distinct borrowers.

4 Algorithm
We will first address the problem of efficiently finding a
Pareto stable assignment in an abstract two-sided many-
to-many matching market with separable responsive prefer-
ences, and then apply the algorithm we develop to the modi-
fied marketplace with lenders and meta-borrowers.

We begin with some formal definitions. Recall that we
have a two-sided matching marketM = (A,B) with pref-
erence listsPk and multi-unit capacitiesck for all agentsk,
andk’s preference over sets is the natural (partial) order de-
fined by the preferencesPk over individuals as in[Erdil and
Ergin, 2008; 2009]. We can assume without loss of general-
ity that |A| = |B| = n by adding dummy isolated nodes with
ck = 0 to the market.

Definition 4.1 (Level function). We use the functionLi(·) to
encode the preference list of a nodei ∈ A. For eachj ∈ Pi,
let Li(j) ∈ {1, . . . , n} denote therankingof j in i’s prefer-
ence list. Therefore, for anyj, j′ ∈ Pi, if Li(j) < Li(j

′),
theni strictly prefersj to j′; if Li(j) ≤ Li(j

′), theni weakly

prefersj to j′; if Li(j) = Li(j
′), then i is indifferent be-

tweenj andj′. The definition of the level functionLj(·) for
eachj ∈ B is symmetric.

Stability. We say that an assignmentX = (xij) is stable if
there is no blocking pair(i, j), i ∈ A andj ∈ B, (i, j) ∈
E, such that bothi and j have leftover capacity;or i has
leftover capacity and there isi′, xi′j > 0, such thatj strictly
prefersi to i′ (or similarly for somej); or there arei′ andj′,
xij′ > 0 andxi′j > 0, such thati strictly prefersj to j′ andj
strictly prefersi to i′. Note thatbothmembers of a blocking
pair must strictly prefer to trade with each other. A stable
assignment always exists, and can be found (efficiently) using
a variant of Gale-Shapley algorithm[Gale and Shapley, 1962]
for computing stable matchings.

Pareto efficiency. Given an assignmentX = (xij), let
xi(α) =

∑

j: Li(j)≤α xij be the number of units ofi’s ca-
pacity that is assigned at levels no worse thanα, andxj(β) =
∑

i: Lj(i)≤β xij be the number of units ofj’s capacity that is
assigned at levels no worse thanβ. We say thatX is Pareto
efficient if there is no other feasible assignmentY = (yij)
such thatyi(α) ≥ xi(α) andyj(β) ≥ xj(β), for all i, j and
α, β, and at least one of the inequalities is strict. That is,X is
not Pareto-dominated by any other assignment where at least
one agent is strictly better off and no one is worse off.

Pareto stability. A feasible assignment is calledPareto-
stableif it is both stable and Pareto efficient.

Recall that when preference lists contain ties, a stable
matching need not be Pareto efficient. The following defini-
tion is critical to our algorithm for Pareto-stable assignment.

Definition 4.2 (Augmenting Path and Cycle). Given an as-
signmentX = (xij), a sequence[i0, j1, i1, . . . , j`, i`, j`+1]
is anaugmenting pathif the following conditions hold:

• xi0 < ci0 andxj`+1
< cj`+1

.

• xikjk
> 0 for k = 1, . . . , `.

• Lik
(jk) ≥ Lik

(jk+1) andLjk
(ik−1) ≤ Ljk

(ik) for k =
1, . . . , `.

A sequence[i1, j2, i2, . . . , j`, i`, j1, i1] is an augmenting cy-
cle if the following conditions hold:

• xikjk
> 0 for k = 1, . . . , `.

• Lik
(jk) ≥ Lik

(jk+1) andLjk
(ik−1) ≤ Ljk

(ik) for k =
1, . . . , `, wherei0 = i` andj`+1 = j1.

• At least one of these inequalities is strict. Ifik is such a
node, we say the augmenting cycle is associated withik
at levelLik

(jk) (and similarly forjk.)

Since our nodes have preferences in addition to capacities,
augmenting paths and cycles mustimprove not just the size
of an assignment but also its quality, as given by node prefer-
ences. The first condition in the definition of the augmenting
path says that the capacities ofi0 andj`+1 are not exhausted.
The second condition says that there is a positive allocation
from ik to jk in the current assignmentX, and the last con-
dition says thatik weakly prefersjk+1 to jk andjk weakly
prefersik−1 to ik. Thus, we can inject (at least) one unit
of flow from ik−1 to jk and fromi` to j`+1 and withdraw

the same amount fromik to jk for eachk = 1, . . . , ` in the
augmenting path to obtain a Pareto improvement overX. A
similar Pareto improvement can be obtained for augmenting
cycles.

We have the following easy lemma.

Lemma 4.3. Any feasible assignmentX that has no aug-
menting paths or cycles is Pareto efficient.

4.1 Computing a Pareto Stable Assignment
We now give a strongly polynomial time algorithm to com-
pute a Pareto stable assignment. Note that ifX is a sta-
ble assignment, reassigning according to any augmenting
path or cycle ofX preserves stability,i.e., any assignment
Y that Pareto-dominates a stable assignmentX is stable as
well [Erdil and Ergin, 2009]. Together with Lemma 4.3, this
suggests that starting with a stable assignment, and then mak-
ing improvements to it using augmenting paths and cycles un-
til no more improvements are possible, will result in a Pareto-
stable assignment.

How do we find such augmenting paths and cycles? First
consider the simplest case with unit capacity,i.e., ci = cj = 1
for all i, j, where an assignment degenerates to a match-
ing. Given an existing matching, define a new directed bi-
partite graph with the same nodes, where all forward edges
are “weak improvement” edges with respect to the existing
matching, and backward edges correspond to the pairings in
current matching. Then we can find augmenting paths by in-
troducing a sources and sinkt that link to unmatched nodes
on each side and findings-t paths in the resulting network.
Augmenting cycles can be found by a similar construction.

For our general case whereci, cj ≥ 1, however,even the
concept of improvement edges for a node is not well defined:
since a node can have multiple partners in an assignment, a
particular edge can be an improvement for some part of that
node’s capacity and not for some others. For instance, sup-
pose that nodei (with ci = 2) is matched to nodesj1 andj3,
and suppose thati strictly prefersj1 to j2 to j3. Then,(i, j2)
would only represent an improvement relative to(i, j3), but
not with respect to(i, j1), both of which exist in the current
assignment. An obvious way to fix this problem is to make
copies of each node, one copy for each unit of its capacity, in
which case improvement edges are well-defined — each unit
of capacity is associated with a unique neighbor in any as-
signment. However, this new graph has size

∑

i ci +
∑

j cj ,
leading to a runtime that is polynomial in

∑

i ci +
∑

j cj ,
which isexponentialin the size of the input.

Construction of networks. In order to define improvement
edges in this setting with multiunit capacities, we will create
a new augmented bipartite graphG from the original bipar-
tite marketM and the preference listsPk. The vertex set of
G will consist of copies of each node inM , whereeach copy
represents a level on that node’s preference list. We then de-
fine forward and backward edges between the vertices: for-
ward edges are the (weak) improvement edges, while there
is one backward edge for every edge(i, j) ∈ E correspond-
ing to i andj’s levels inPj andPi. This augmented graph,
which is assignment-independent and depends only on the
preference lists of the nodes, is then used to define a sequence

of networks with assignment-dependent capacities which we
will use to find augmenting paths and cycles.

Definition 4.4. Given the marketM , constructG as follows.

• Vertices: For each nodei ∈ A ∪ B, we introducen
new verticesT (i) = {i(1), . . . , i(n)}, wherei(α) cor-
responds to theα-th level of the preference list ofi. (If
i hask < n levels in his preference list, it suffices to
introducek verticesi(1), . . . , i(k); here, we usen levels
for uniformity.)

• Edges: For each pair(i, j) ∈ E, let α = Li(j) and
β = Lj(i). We add abackwardedge betweeni(α) and
j(β), i.e.,j(β) → i(α). Further, we add aforwardedge
i(α′) → j(β′) for every pair of verticesi(α′) andj(β′)
satisfyingα′ ≥ α andβ′ ≥ β.

Figure 1 gives an example of the construction of graph
G, whenM contains two lendersi1, i2 and three borrowers
j1, j2, j3 (node preferences are specified next to each node in
the top figure, e.g.,i2 is indifferent betweenj1 andj2, and
prefers both of them toj3). The figure on the right illustrates
the verticesT (·) of G and the backward edges; the figure
on the bottom left shows the forward edges between the two
groups of verticesT (i2) andT (j3) in G.

T (i2)

T (i1)

T (j3)

T (j2)

T (j1)

i2(3)

i2(2)

i2(1)

i1(3)

i1(2)

i1(1)

j3(2)

j3(1)

j2(2)

j2(1)

j1(2)

j1(1)

Construction of graph G

(j1, j2) : i1

([j1, j2], j3) : i2

j1 : ([i1, i2])

j2 : ([i1, i2])

j3 : (i2)

2

3

1

2

2

Social lending market M

(values on nodes are their capacities)

i2(3)

i2(2)

i2(1)

j3(2)

j3(1)

Figure 1: Construction of graphG.

Note that the construction ofG is completely indepen-
dent of any actual assignmentX. We next define the net-
works H,Hi,α,Hj,β , whose structure is based onG and is
assignment-independent, but whose edge capacities depend
on the assignmentX.

Definition 4.5 (NetworkH, Hi,α andHj,β). Given the graph
G and an assignmentX = (xij), let G(X) be the network
where all forward edges inG are assigned capacity∞, and
all backward edges are assigned capacityxij . We useG(X)
to define the networksH(X), Hi,α(X) andHj,β(X) for each
i ∈ A andj ∈ B, andα, β = 1, . . . , n, as follows.

For H(X), include a sources and a sinkt; further, for
eachi ∈ A andj ∈ B, add an extra vertexhi andhj , respec-
tively. Connects → hi with capacityci−xi, andhj → t with
capacitycj − xj , wherexi =

∑

j xij andxj =
∑

i xij . Fur-
ther, connecthi → i(α) with capacity∞ for α = 1, . . . , n,
and connectj(β) → hj with ∞ capacity forβ = 1, . . . , n.

For Hi,α(X), we add a sources and a sinkt, and connect
s → j(β) with capacity∞ for each vertexj(β) satisfying

α > Li(j) and β ≥ Lj(i). Further, we connectj(β) → t
with capacityxij for eachj(β) satisfyingα ≤ Li(j) and
β = Lj(i). The networkHj,β(X) is defined symmetrically.

We will use the networkH to find augmenting paths with
respect to an existing stable assignmentX. Observe that the
only edges from the source with nonzero capacity are those
that connect to a nodei ∈ A with leftover capacity; sim-
ilarly, the only edges to the sink with nonzero capacity are
from a nodej ∈ B with leftover capacity. Sending flow from
s to t in H therefore involves increasing the total size of the
assignment while maintaining quality, exactly as in an aug-
menting path forX. Similarly, we will use the networksHi,α

andHj,β to find augmenting cycles associated withi andj at
level α andβ respectively. Consider any flow froms to t in
Hi,α, say,

[s, j1(β1), i1(α1), . . . , i2(α2), j2(β2), t]

We know thatα > Li(j1) (i.e., i strictly prefersj1 to all its
neighbors at levelα) andLj1(i1) = β1 ≥ Lj1(i) (i.e., j1
weakly prefersi to i1). Further, we haveα ≤ Li(j2) (this
implies thati strictly prefersj1 to j2) andLj2(i2) ≤ β2 =
Lj2(i) (i.e., j2 weakly prefersi2 to i). That is, flows from
s to t in Hi,α correspond to augmenting cycles for nodei at
levels less than or equal toα in X (and similarly forHj,β).

Our algorithm, summarized below, finds maximum flows
in all the constructed networksH, Hi,α andHj,β to eliminate
augmenting paths and cycles.

PARETO STABLE ASSIGNMENT(ALG-PS)

1. LetX be an arbitrary stable assignment

2. Construct networksH(X), Hi,α(X) and Hj,β(X), for
eachi ∈ A, j ∈ B, andα, β = 1, . . . , n

3. ForH, Hi,α andHj,β constructed above (H to be exe-
cuted first)

(a) Compute a maximum flowF = (fuv) from s to t
(if there is no flow from vertexu to v, setfuv = 0)

(b) For each forward edgei(α)→ j(β),
let xij = xij + fi(α)j(β)

(c) For each backward edgej(β)→ i(α),
let xij = xij − fj(β)i(α)

(d) If the graph isHi,α

• Let xij = xij + fsj(β) for eachs→ j(β)
• Let xij = xij − fj(β)t for eachj(β)→ t

(e) If the graph isHj,β

• Let xij = xij − fsj(β) for eachs→ i(α)
• Let xij = xij + fj(β)t for eachi(α)→ t

(f) Update capacities for next graph to be executed ac-
cording to new assignmentX

4. OutputX (denoted byX∗)

Analysis. To prove that ALG-PS indeed computes a Pareto-
stable assignment, we need to show two things— first, that the
assignmentX∗ returned by the algorithm is stable; this fol-
lows easily from stability of the original assignment and that
reassigning according to augmenting paths and cycles pre-
serves stability.

Second, we need to show thatX∗ is Pareto efficient,i.e.,
no further Pareto improvements are possible when the algo-
rithm terminates. The difficulty here is that the assignment
X changes through the course of the algorithm, and therefore
we need to show that, for instance, no other augmenting paths
can be found after the networkH has been executed, even
though the assignmentX that was used to define the network
H(X) has been changed (and similarly for all augmenting
cycles). That is, while we compute maximum flows inH(X)
to find all augmenting paths for a given assignmentX, we
need to show that no new augmenting paths have showed
up in any updated assignments computed by the algorithm.
Similarly, finding (i, α) augmenting cycles viaHi,α(X) for
someassignmentX does not automatically imply that no fur-
ther (i, α) augmenting cycles will ever be found inany of
the (different) assignments computed through the course of
the algorithm, since the assignments of all nodes can change
each time when a maximum flow is computed, leading to the
possibility of new valids-t paths, and therefore possibly new
augmenting cycles. That this does not is due to a careful
choice of the construction of the networksH, Hi,α, Hj,β ;
in fact, it is possible to construct examples showing that this
does not hold for other, perhaps more natural, definitions of
the networks.

Our main claim is stated next. The proof uses the
assignment-independence of the structure of the networks
H,Hi,α,Hj,β to argue that if there is an augmenting path in
any assignment produced afterH is executed, we could not
have found the maximum flow inH(X) to begin with, a con-
tradiction; the argument for augmenting cycles uses a similar
idea. All proofs can be found in the full version of the paper3.

Proposition 4.6. There is no augmenting path after graph
H is executed, and no augmenting cycle associated withi
(resp.j) at levelα (resp.β) after graphHi,α (resp.Hj,β) is
executed inALG-PS.

The above claim, together with Lemma 4.3, implies that
the outcome returned by ALG-PS is indeed a Pareto-efficient
assignment as required.

Running time.Each graphH,Hi,α andHj,β can be con-
structed in timeO(m2n2), wheren = |A| andm = |B|, and
there areO(mn) such graphs in all. Each graph hasO(mn)
vertices, and is executed exactly once in timeO(m3n3),
which is the running time for maximum flow using any clas-
sic network flow algorithm. Therefore, the running time of
the algorithm is inO(m4n4). We summarize this below.

Theorem 4.7. AlgorithmALG-PScomputes a Pareto-stable
assignment in strongly polynomial timeO(m4n4).

We note that the number of borrower categories in Zopa
is a small constant, so this algorithm computes a Pareto-
stable assignment in our reduced marketplace(A,C) in time
O(n4) wheren = |A| is the number of lenders. In fact,
a sharper bound on the running time of the algorithm is
O((

∑

k∈M |Pk|)
4), where |Pk| is the length ofk’s prefer-

ence list. This means that even when each category contains
a single borrower as in Prosper (som is large), the runtime
remains practically feasible: since lenders usually placebids

3http://www.ntu.edu.sg/home/ningc/paper/ijcai11-z.pdf

on only a small number of borrowers in typical social lending
markets,

∑

k∈M |Pk| = O(n) leading to runtimeO(n4).
Computing the Market Clearing Assignment. Having

computed allocationsX∗ = (x∗
iCr

) between lenders and bor-
rower categories using algorithm ALG-PS, we now need to
allocate the amountx∗

iCr
amongst borrowers inCr. Note

that by feasibility ofX∗ for (A,C), we have
∑

i∈A x∗
iCr

≤
∑

j∈Cr
cj . We simply dividex∗

iCr
amongst borrowers inCr

proportional to their demands:

yi0j0 = x∗
i0Cr

·
cj0

∑

j∈Cr
cj

. (∗)

This allocation is feasible since
∑

j∈Cr
yij = x∗

iCr
and

∑

i∈A yij ≤ cj . This assignmentY = (yij) can be proven
to satisfy all the properties claimed in Theorem 3.2 for the
actual marketplaceM = (A,B), and is our desired output.

Acknowledgements.We are very grateful to Gabrielle De-
mange, Bettina Klaus, Fuhito Kojima, Mohammad Mah-
dian, Preston McAfee, David Pennock, Michael Schwarz and
anonymous referees for helpful discussions and comments.

References
[Chenet al., 2009] N. Chen, A. Ghosh, and N. Lambert. So-

cial lending. InEC 2009, pages 335–344, 2009.

[Echenique and Oviedo, 2006] F. Echenique and J. Oviedo.
A theory of stability in many-to-many matching markets.
Theoretical Economics, 1:233–273, 2006.

[Erdil and Ergin, 2008] A. Erdil and H. Ergin. What’s the
matter with tie-breaking? Improving efficiency in school
choice.American Economic Review, 98:669–689, 2008.

[Erdil and Ergin, 2009] A. Erdil and H. Ergin. Two-sided
matching with indifferences. Working paper. 2009.

[Freedman and Jin, 2009] S. Freedman and G. Jin. Learn-
ing by doing with asymmetric information: Evidence from
Prosper.com. Working paper. 2009.

[Gale and Shapley, 1962] D. Gale and L. S. Shapley. Col-
lege admissions and the stability of marriage.American
Mathematical Monthly, pages 9–15, 1962.

[Gusfield and Irving, 1989] D. Gusfield and R. W. Irving.
The Stable Marriage Problem: Structure and Algorithms.
MIT Press, 1989.

[Hatfield and Kominers, 2010] J. Hatfield and S. Kominers.
Matching in networks with bilateral contracts. InEC 2010,
pages 119–120, 2010.

[Iwama and Miyazaki, 2008] K. Iwama and S. Miyazaki.
Stable Marriage with Ties and Incomplete Lists. Ency-
clopedia of Algorithms, 2008.

[Iwamaet al., 1999] K. Iwama, D. Manlove, S. Miyazaki,
and Y. Morita. Stable marriage with incomplete lists and
ties. InICALP 1999, pages 443–452, 1999.

[Roth and Sotomayor, 1992] A. E. Roth and M. Sotomayor.
Two-Sided Matching: A Study in Game-Theoretic Model-
ing and Analysis. Cambridge University Press, 1992.

[Roth, 2008] A. E. Roth. Deferred acceptance algorithms:
History, theory, practice, and open questions.Interna-
tional Journal of Game Theory, pages 537–569, 2008.

[Sotomayor, 2009] M. Sotomayor. Pareto-stability is a nat-
ural solution concept in matching markets with indiffer-
ences. Working paper. 2009.

[Yanagisawa, 2007] H. Yanagisawa. Approximation Algo-
rithms for Stable Marriage Problems. Ph.D. Thesis, Kyoto
University, 2007.

A Other Solution Concepts
Here we briefly discuss other candidate solution concepts,
and justify our choice of assignment. Given that one of
the challenges of the social lending marketplace is to at-
tract lenders, one possibility is to seek a lender-optimal sta-
ble assignment, which is best for every lender amongst the
set of all stable assignments. However, it is well known
that when preferences contain ties, a lender-optimal stable
matching is not well defined, and need not exist. A natural
weaker solution concept is to seek a stable lender-Pareto ef-
ficient assignment— an assignment that is stable assignment
and Pareto efficient for lenders,i.e., there is no other assign-
ment which constitutes a Pareto improvement for lenders.
However, as Example 2.31 in[Roth and Sotomayor, 1992]
shows, such a lender-Pareto optimal solution again need not
exist. Erdil and Ergin[Erdil and Ergin, 2008] consider an
even weaker solution concept in the context of school choice:
They propose choosing a stable assignment such that there is
no otherstableassignment which is a Pareto improvement for
lenders. This solution concept, however, while meaningfulin
the original context of school choice, unfairly penalizes bor-
rowers at the expense of lenders, as the following example
shows.

Example A.1. There are two lendersi1, i2 and two borrow-
ers j1, j2 with unit supply/demand each, wherej1 is a low-
risk borrower andj2 is high-risk. Assume thati1 offers an in-
terest rate of 8% toj1 and 17% toj2, and prefersj2 to j1 (i.e.,
the high-risk high-return investment); andi2 offers 5% toj1
and 10% toj2, and is indifferent between these two. Then the
matching{(i1, j1; 8%), (i2, j2; 10%)} is stable, but is Pareto-
dominated, from the perspective of the lenders, by another
stable matching{(i1, j2; 17%), (i2, j1; 5%)}. But note that
the second matching gives borrowerj2 a loan with a very
high interest-rate (17%), even though there are lenders who
are willing to lend toj2 at a much better interest-rate.

Another family of solution concepts is based on total size
or weight. First off, we note that aggregate solution concepts
such as maximum flow or minimum weight flow or maxi-
mal flow completely ignore the lender-specified preferences,
and indeed, it is not hard to see construct simple examples
where the assignments produced by such aggregate solution
concepts are disliked by both lenders and borrowers. Next, a
maximum size stable assignment does not necessarily guar-
antee Pareto efficiency (see the example below). Further, itis
in general NP-hard to compute[Yanagisawa, 2007] even for
the unit node-capacity setting. Therefore, it is not suitable for
applications like social lending with massive data input.

Example A.2. (MAX -SIZE STABLE MATCHING NEED NOT
BE PARETO EFFICIENT.) There are two lendersi1, i2 and
two borrowersj1, j2 with unit supply/demand each. Lender
i1 prefersj2 to j1 and all other agents are indifferent between
the two alternatives. The stable matching(i1, j1), (i2, j2) has
the maximum possible size of2, but is not Pareto efficient as it
is Pareto-dominated by the matching(i1, j2), (i2, j1), where
no one is worse off andi1 strictly improves her assignment.

B Missing Proofs: Algorithm ALG-PS
By the flow decomposition theorem, any feasible flow in a
network can be decomposed into the sum of flows on paths
from s to t, and flows around cycles. Therefore, the reassign-
ments defined by Step 3 in the algorithm can be decomposed
according to these individual flows along paths and cycles as
well. In the following discussion, for each maximum flow in
H,Hi,α andHj,β , we will consider each such component of
the decomposed flow separately for clarity of exposition.

Further, consider anys-t flow in Hi,α, F =
[s, j1(β1), . . . , j2(β2), t]. The reassignment in Step 3(d) in-
jects flow fromi to j1 and withdraws the same amount of
flow from i to j2. Hence,F is equivalent to a pseudo-flow
F ′ = [i(α), j1(β1), . . . , j2(β2), i(α)], which is around a cy-
cle. The same argument applies tos-t flows in Hj,β . There-
fore, to simplify our discussion, we assume (without loss of
generality) that all flows inHi,α andHj,β are around cycles.

B.1 Feasibility and Stability
We first argue thatX∗ returned by the algorithm is a fea-
sible assignment, and is a Pareto improvement overX, i.e.,
every node’s assignment during the algorithm will only be
enhanced (i.e. never get worse off). We consider flows along
paths and cycles respectively.

• The flow is[i1(α1), j2(β2), . . . , j`(β`), i`(α`), j1(β1), i1(α1)],
which is around a cycle in eitherH,Hi,α or Hj,β .

– Feasibility. By the flow conservation constraints
and the capacities defined on backward edges, the
total number of units for each vertex will not
change and still remains feasible.

– Enhancement. By the construction of the graphs,
we know that for each forward edgeik(αk) →
jk+1(βk+1), k = 1, . . . , ` (wherej`+1(β`+1) =
j1(β1)), Lik

(jk+1) ≤ αk andLjk+1
(ik) ≤ βk+1.

Further, since eachjk(βk) → ik(αk) is a backward
edge, fork = 1, . . . , `, we haveLik

(jk) = αk and
Ljk

(ik) = βk. Hence, after reassigning the assign-
ment (withdraw units from backward edges and in-
ject the same amount on forward edges), each ver-
tex gets an assignment at least as good as its previ-
ous assignment.

• The flowF = [s, hi, i(α), . . . , j(β), hj , t] is from s to t
in H.

– Feasibility. Since the capacity on edges → hi is
ci − xi and the capacity on edgehj → t is cj − xj ,
the new number of units (i.e., flow) injected intoi
and j is upper bounded byci − xi and cj − xj ,
respectively. Hence, the total assignment ofi and

j is still feasible. For any vertex betweeni(α) and
j(β) in F , similar to the discussion above, the total
number of units assigned will not change and it still
gives a feasible assignment.

– Enhancement. By the same argument as above, the
assignment of all vertices betweeni(α) and j(β)
will not get worse off. For the two vertices con-
necting tohi andhj , we will only inject more as-
signment oni andj, respectively. Hence, no vertex
is worse off after reassignment.

Lemma B.1. The solutionX∗ returned byALG-PSis a sta-
ble assignment.

Proof. Let X = (xij) be the stable assignment which is
used to initialize the algorithm. By the arguments above, we
know thatx∗

i ≥ xi andx∗
j ≥ xj . Assume otherwise that

X∗ = (x∗
ij) is not a stable assignment. Then there is a block-

ing pair (i, j) for X∗, (i, j) ∈ E. By the definition of sta-
ble assignment, we only need to consider the following three
cases:
Case 1. ci > x∗

i andcj > x∗
j , i.e. bothi andj have supply

and demand left inX∗. Thenci > xi and cj > xj ,
which implies that(i, j) is a blocking pair forX as well.

Case 2. ci = x∗
i andcj > x∗

j . Since(i, j) is a blocking pair,
there must existj1 such thatx∗

ij1
> 0 and i prefersj

to j1. By the enhancement argument above, the levels
of assignment ofi only improve in toX∗ relative toX.
Hence, eitherci > xi or there is aj2 such thatxij2 > 0
andLi(j) < Li(j1) ≤ Li(j2), i.e. i prefersj to j2. This
implies that(i, j) is a blocking pair forX as well. The
case whereci > x∗

i andcj = x∗
j is symmetric.

Case 3. ci = x∗
i andcj = x∗

j . Similar to the above argument,
for agenti, eitherci > xi or there isj′ such thatxij′ > 0
andi prefersj to j′; and forj, eithercj > xj or there is
a i′ such thatxi′j > 0 andj prefersi to i′. These two
facts imply that(i, j) is a blocking pair forX.

Therefore, for each case, we get a contradiction. Hence,X∗

is a stable assignment.

B.2 Pareto efficiency
In this subsection, we will prove that algorithm ALG-PS out-
puts a Pareto efficient assignment.
Lemma B.2. Any assignmentX that has no augmenting path
and augmenting cycle is Pareto efficient.

Proof. For eachi andj, we construct a new market by mak-
ing ci andcj identical copies (with unit capacity each and the
same preference list), respectively. Note that the new market
might contain exponential number of agents (but here we are
only concerned with its economic properties rather than algo-
rithmic computations). It can be seen that any Pareto efficient
assignment of the original market corresponds to a Pareto ef-
ficient matching of the new market. By a claim proved by
Sotomayor[Sotomayor, 2009], which says that a matching
is Pareto efficient if and only if it contains no augmenting
path and cycle, we know that the non-existence of augment-
ing path and cycle gives a sufficient and necessary condition
for Pareto efficiency for our setting as well.

Proposition B.3. There is no augmenting path after graphH
is executed in step 3 ofALG-PS.

Proof. Denote byX0 the assignment used to defineH, and
let X be a assignment computed during the algorithm at some
step afterH being executed. Assume otherwise that there is
still an augmenting pathP in X,

P = [i0, j1, i1, . . . , j`, i`, j`+1]

Let α0 = Li0(j1), αk = Lik
(jk) and βk = Ljk

(ik) for
k = 1, . . . , `, andβ`+1 = Lj`+1

(i`). By definition of aug-
menting paths, we haveLjk

(ik−1) ≤ Ljk
(ik) = βk and

αk = Lik
(jk) ≥ Lik

(jk+1), for k = 1, . . . , `.
Consider thes-t path corresponding toP :

F = [s, i0(α0), j1(β1), i1(α1), . . . , j`(β`), i`(α`), j`+1(β`+1), t]

Since the structure of the networksH,Hi,α,Hj,β are in-
dependent of the assignment, all forward edgesik(αk) →
jk+1(βk+1), as well as all backward edgesjk(βk) → ik(αk)
are inH, as well asHi,α andHj,β .

First we will show that there is no augmenting path in the
assignmentX1 computed right afterH(X0) is executed by
the algorithm (note that we computed the maximum flow in
H(X0), not H(X1), so this is not obvious). The argument
that shows that there is no augmenting path in any assignment
X returned after execution of any of theHi,α or Hj,β in the
course of the algorithm is similar and is given next.

• First suppose thatX is the new assignment immediately
after H(X0) is executed. If all backward edges inF ,
jk(βk) → ik(αk), have non-zero capacities inH(X0),
then the algorithm should be able to inject more flow
according toF while computing the maximum flow in
H(X0). Hence, there must be a pair, sayik andjk, that
has no capacity onjk(βk) → ik(αk) in H(X0).
First suppose for simplicity that there is exactly one such
pair ik, jk (the argument when there are multiple such
pairs is similar, as explained later). Since this back-
ward edge does have capacity inH(X1), the algorithm
must have sent a positive flow, say fromik(α′) to jk(β′)
while computing the maximum flow inH(X0). (By
the reassignments of assignment in step 3(b) of the al-
gorithm, this will lead to a positive capacity on edge
jk(βk) → ik(αk) after the execution ofH(X0).) Note
that α′ ≥ αk andβ′ ≥ βk. Consider the flowF ′ in
H(X0) that injects flows throughik(α′) → jk(β′).

– If F ′ is an s-t flow, then instead of using the
edgeik(α′) → jk(β′), F ′ may follow ik(α′) →
jk+1(βk+1) and the rest of edges inF ; and in-
stead of using the edgeik−1(αk−1) → jk(βk), F
may follow ik−1(αk−1) → jk(β′) and the rest of
edges inF ′. Since all other edges inF except the
backward edge(jk, ik) are feasible inH(X0), and
F ′ is a feasible flow inH(X0), the new flow ob-
tained by combiningF andF ′ as described is fea-
sible inH(X0), and increases the flow froms to t
in H(X0), contradicting the fact that the algorithm
computed a maximum flow inH(X0).

– If F ′ is a flow around a cycle,

F ′ = [ik(α′), jk(β′), i′1(α
′
1), j

′
1(β

′
1), . . . ,

i′r(α
′
r), j

′
r(β

′
r), ik(α′)]

i.e., throughF ′, we inject assignment fromik(α′)
to jk(β′), thus increasing the capacity on the back-
ward edgejk(βk) → ik(αk). Note that the incre-
ment on the capacity ofjk(βk) → ik(αk) by F ′ is
upper bounded by the capacities of all edges inF ′.
Observe that an equivalent way to travel through
[ik−1(βk−1), jk(βk), ik(αk), jk+1(βk+1)] in F is
to take a detour

ik−1(βk−1), jk(β′), i′1(α
′
1), j

′
1(β

′
1), · · · ,

i′r(α
′
r), j

′
r(β

′
r), ik(α′), jk+1(βk+1)

Note that the first and last edge,ik−1(βk−1) →
jk(β′) and ik(α′) → jk+1(βk+1), are guaranteed
to exist. Further, the capacity on these two edges
is infinite, thus the maximum possible amount of
flows on such detour is always at least the capac-
ity of edgejk(βk) → ik(αk) increased byF ′. So
again, we can combineF andF ′ to obtain a flow
which is feasible inH(X0), and increases the to-
tal flow from s to t, contradicting the fact that the
algorithm computed a maximum flow inH(X0).

If there are multiple backward edges inF with zero ca-
pacity inH(X0), the argument proceeds similarly; add
to F the flows F ′

ikjk
corresponding to each of these

backward edges (i.e., the ones that lead to increased as-
signment on(ik, jk)) to obtain a feasible flow inH(X0)
that increases the total flow froms to t giving a contra-
diction.
Hence, there is no augmenting path after the execution
of H.

• Next, we show that there is no augmenting path in any
assignmentX returned by the algorithm after execut-
ing any of the graphsHi,α,Hj,β . The proof proceeds
by induction—the base case is to show that there is no
augmenting path in the assignment obtained after exe-
cuting the firstHi,α network afterH, given that there is
no augmenting path after executingH. The induction
step shows that if there is no augmenting path after the
first Hi,α is executed, there can be no augmenting path
after any laterHi,α or Hj,β network is executed as well.
Assume that the first graph executed afterH isHi,α, and
letX andX ′ be the assignments before and after execut-
ing Hi,α respectively. We have already shown that is no
augmenting path inX after the execution ofH. So there
must be a backward edge, sayjk(βk) → ik(αk), which
has zero capacity in the assignmentX but positive ca-
pacity inX ′; the capacity of this edge must have been in-
creased while computing the maximum flow inHi,α(X)
through either ans-t flow or a flow around a cycle. Sim-
ilar to the previous arguments, we can combine this flow
with the augmenting path inX ′ to obtain an augment-
ing path forX. This implies that there is an augment-
ing path after the execution ofH, a contradiction. (The

analysis is similar for graphHj,β .) The induction step
uses an almost identical argument to show that if there is
an augmenting path afterHi,α (or Hj,β), an augmenting
path can be shown to exist in the assignment used as in-
put toHi,α as well, violating the induction hypothesis.
The claim therefore follows by induction on the execu-
tion of all graphsHi,α andHj,β , for anyi ∈ A, j ∈ B,
andα, β = 1, . . . , n.

Next we discuss removing augmenting cycles in Algorithm
ALG-PS, and show that once networkHi,α is executed by the
algorithm, there are no augmenting cycles for nodei at level
α in any assignment computed by the algorithm thenceforth.
Note that the algorithm does not specify any particular order
(in particular, onα for a given nodei) in which theHi,α’s are
to be executed. Also, observe that while the structure of the
networkHi,α allows augmenting cycles of levelsless than
or equal toα to be found (since everyj with Li(j) ≥ α is
connected to the sinkt), it is only guaranteed that augmenting
cycles of levelexactly equalto α will never be found again
through the remainder of the algorithm.

A natural question is why it is necessary to link everyj,
Li(j) > α, to the sink inHi,α when executingHi,α only
guarantees removing all augmenting cycles of levelexactly
equal toα. The example below shows what happens if the
networkHi,α is defined to only include links to the sink for
nodes withLi(j) = α, i.e., to only try to find augmenting
cycles of levelα: In this case, it is possible that there are
still augmenting cycles of levelα in the assignment computed
immediately afterHi,α being executed. In our construction
when the network is defined to include the remaining links
of level strictly less thanα as well, this does not happen and
Hi,α only needs to be executed once.

Example B.4. Suppose thatA = {i1, i2, i3, k} and B =
{j1, j2, j3, j4, j5}. All nodes exceptk have unit capacity and
are indifferent between all possible partners (i.e., have only
one level in their preference list). Nodek has capacity2,
and preference list([j1, j5], [j3, j4], j2). Suppose we start
with the (stable) assignmentX0 wherek is matched toj2, j3,
and the remaining assignments are(i1, j1), (i2, j4), (i3, j5)
(note there are no augmenting paths inX0). Consider finding
the maximum flow in networkHi,α without the link j2 → t
for α = 2. In this network, the total capacity of edges in-
cident to the sink is 1, thus we can send at most one unit
flow, for examplek → j1 → i1 → j2 → k → j4 →
i2 → j3 → t (note that the twok’s here correspond to
different vertices inT (k) in the network). After reassign-
ing assignment according to this flow, we obtain the new as-
signmentX ′ (i1, j2), (i2, j3), (i3, j5), (k, j1), (k, j4). But ob-
serve thatX ′ still has an augmenting cycle at level2 for node
k: k → j5 → i3 → j4 → k. However, with the original defi-
nition ofHi,α, which linksj2 → t, the maximum flow consists
of pushing flow along the pathsk → j1 → i1 → j2 → t and
k → j5 → i3 → j4 → i2 → j3 → t, leading to the new
assignmentX ′′ = (i1, j2), (i2, j3), (i3, j4), (k, j1), (k, j5)
which has no remaining augmenting cycles fork.

Proposition B.5. There is no augmenting cycle associated
with i (resp. j) at levelα (resp. β) after graphHi,α (resp.
Hj,β) is executed in step 3 ofALG-PS.

Proof. We will only prove the claim fori ∈ A and Hi,α;
the argument forj ∈ B and Hj,β is symmetric. Assume
otherwise that there is still an augmenting cycle

P = [i = i1, j2, i2, . . . , j`, i`, j1, i1]

associated withi at level α in some assignmentX ′ com-
puted after executingHi,α(X). Let αk = Lik

(jk) andβk =
Ljk

(ik) for k = 1, . . . , `. SinceP is an augmenting cycle as-
sociated withi1 at levelα, we haveα = α1 > Li1(j2). Con-
sider the cycle corresponding toP in the augmented graph
G:

F = [i1(α1), j2(β2), i2(α2), . . . , j`(β`), i`(α`), j1(β1), i1(α1)]

(Since the structure ofHi,α,Hj,β are assignment indepen-
dent, all forward edgesik(αk) → jk+1(βk+1) and all back-
ward edgesjk(βk) → ik(αk) are inHi,α andHj,β .) Note
that inHi,α, we haves → j2(β2) andj1(β1) → t. Denote
i`+1(α`+1) = i1(α1) andj`+1(β`+1) = j1(β1).

The proof is similar to the previous proposition; the only
difference is that we will separately need to consider the case
k = 1, i.e., the backward edge(j1, i1) is the one whose ca-
pacity increases.

• First consider the assignmentX ′ returned immediately
after executingHi,α. If all backward edgesjk(βk) →
ik(αk) have non-zero capacities inX, thenF is a feasi-
ble flow inHi,α(X) which increases the total flow from
s to t. Hence, there must be a pair, sayik andjk, which
has no capacity onjk(βk) → ik(αk) in Hi,α(X), but
has positive capacity inX ′. Hence, the algorithm must
have sent a positive flow, say fromik(α′) to jk(β′),
while executingHi,α(X). Note thatα′ ≥ αk and
β′ ≥ βk. Again, suppose first that there is just one such
pair, and consider the flowF ′ that injects flows through
ik(α′) → jk(β′).

– SupposeF ′ is ans-t flow, i.e.

F ′ = [s, . . . , j′′(β′′), ik(α′), jk(β′), . . . , t]

If k 6= 1, then instead of using the edgeik(α′) →
jk(β′), F ′ may follow ik(α′) → jk+1(βk+1)
and the rest of edges inF ; and instead of using
the edgeik−1(αk−1) → jk(βk), F may follow
ik−1(αk−1) → jk(β′) and the rest of edges inF ′.
These flows are both feasible inHi,α(X) and in-
crease the totals − t flow, giving a contradiction.
If k = 1, i.e. ik = i1 = i, then we haveα =
α1 = αk ≤ α′ = Li(j

′′) andβ′′ = Lj′′(i). Hence,
we havej′′(β′′) → t. Then we can truncateF ′

at j′′(β′′) and route it to the sink directly through
edgej′′(β′′) → t; and re-routeF at ik−1(αk−1)
by following ik−1(αk−1) → jk(β′) and the rest of
edges inF ′. These new flows are both now feasible
in Hi,α(X) and increase total flow, a contradiction.

– If F ′ is a flow around a cycle (i.e.F ′ does not
effectively contribute to the maximum flow froms
to t),

F ′ = [ik(α′), jk(β′), i′1(α
′
1), j

′
1(β

′
1), . . . ,

i′r(α
′
r), j

′
r(β

′
r), ik(α′)]

i.e., F ′ injects assignment fromik(α′) to jk(β′), in-
creasing capacity on the backward edgejk(βk) →
ik(αk) in X ′. Further, the increment on the capac-
ity of jk(βk) → ik(αk) by F ′ is upper bounded by
the capacities of all edges inF ′.
If k 6= 1, an equivalent way to travel through
[ik−1(βk−1), jk(βk), ik(αk), jk+1(βk+1)] in F is
to take a detour

ik−1(βk−1), jk(β′), i′1(α
′
1), j

′
1(β

′
1), · · · ,

i′r(α
′
r), j

′
r(β

′
r), ik(α′), jk+1(βk+1)

Note that the first and last edge,ik−1(βk−1) →
jk(β′) and ik(α′) → jk+1(βk+1), are guaranteed
to exist. Further, the capacity on these two edges
is infinite, thus the maximum possible amount of
flows on such a detour is always at least the capac-
ity of edgejk(βk) → ik(αk) increased byF ′. So
again, it is possible to construct a feasible flow in
Hi,α(X) that increases the total flow.
If k = 1, i.e. ik = i1 = i, then we have
α = α1 = αk ≤ α′ = Li(j

′
r) andβ′

r = Lj′

r
(i).

Hence, we havej′r(β
′
r) → t. Then the following

flow combiningF andF ′

i1(α1), j2(β2), i2(α2), . . . , j`(β`), i`(α`) →

jk(β′), i′1(α
′
1), j

′
1(β

′
1), . . . , i

′
r(α

′
r), j

′
r(β

′
r)

is feasible inHi,α(X), again leading to a contra-
diction.

Hence, there is no augmenting cycle associated withi
at levelα after the execution of graphHi,α. The argu-
ment for multiple pairs(ik, jk) is similar to that sketched
for augmenting paths, and proceeds by adding the corre-
sponding flowsF ′.

• Assume that the graph executed right afterHi,α in step 3
is Hi′(α

′). Since there is no augmenting cycle associ-
ated withi at levelα in the assignmentX returned af-
ter executingHi,α, there must be a backward edge, say
jk(βk) → ik(αk), which has zero capacity after the ex-
ecution ofHi,α; the capacity of this edge must be in-
creased byHi′(α

′) through either ans-t flow or a flow
around a cycle. As above, we can construct an augment-
ing cycle usingF that is feasible inX, contradicting that
there was no augmenting cycle afterHi,α.

Hence, there is no augmenting cycle associated withi at
levelα afterHi′(α

′) is executed as well. The analysis is sim-
ilar for graphHj,β . The claim then follows by induction on
the execution of all graphsHi,α andHj,β , for any i ∈ A,
j ∈ B, andα, β = 1, . . . , n.

Finally we provide the proof of the main result, Theorem
3.2.

Theorem B.6. The final assignmentY = (yij) can be com-
puted in timeO(|A|4 + |A||B|) and has the following prop-
erties:

1. Stability: There are no blocking pairs in the original
marketplaceM = (A,B).

2. Pareto efficiency: No agent inM can be made better off
without making some other agent inM strictly worse off.

3. (Weak) envy-freeness: No borrower envies the allocation
of any other borrower in its category.

4. Diversity: Given the allocationsX∗ = (x∗
iCr

), each
lenderi spreads her budget amongst the maximum num-
ber of distinct borrowers.

Proof. Stability of Y in (A,B) follows simply from the fact
thatX∗ = (x∗

iCr
) is a stable assignment for(A,C) by The-

orem 4.7, and the observation that lenders are indifferent be-
tween all the borrowers in a category.

For Pareto efficiency, it suffices to show thatY does
not contain any augmenting path or cycle in(A,B) by
Lemma 4.3. First, sinceX∗ is Pareto efficient in(A,C),
i and Cr cannot both have leftover capacity andx∗

iCr
is

distributed completely amongst borrowers inCr for eachi.
Hence, there can be no augmenting path where all borrow-
ers belong only toCr. Similarly, there is no augmenting
cycle with all borrowers only fromCr because ifj1 ∈ Cr

gets a strictly better allocation, there must bej2 ∈ Cr

who is strictly worse off because all borrowers inCr have
the same preferences over lenders. Therefore, there is no
augmenting path or cycle where all borrowers belong to
the same categoryCr. Now if Y contains an augmenting
path[i0, j1, i1, . . . , j`, i`, j`+1] in market(A,B) whereji be-
longed to at least two different categories, there is an aug-
menting path[i0, Cf(j1), i1, . . . , Cf(j`), i`, Cf(j`+1)

] in the
virtual market(A,C) as well, a contradiction. The same ar-
gument applies for augmenting cycles, soY is Pareto efficient
in (A,B).

(Weak) envy-freeness follows immediately from the pro-
portional distribution ofx∗

iCr
: let lenderi offer interest-rate

pi to categoryCr, then the net interest-rate of anyj ∈ Cr is
∑

i∈A yijpi
∑

i∈A yij

=

∑

i∈A x∗
iCr

pi
∑

i∈A x∗
iCr

which is independent of his capacitycj . So all borrowers
in Cr get the same net interest-rate. The final claim about
diversity simply follows from formula(∗).

C Computing a Stable Assignment

Finally, for completeness, we include the algorithm to find a
stable assignment, which is a simple modification of the Gale-
Shapley algorithm for stable matching; the fairly straightfor-
ward proof is omitted.

Theorem C.1. Algorithm STABLE-ASSIGNMENT computes
a stable assignment.

STABLE-ASSIGNMENT

1. For each i ∈ A, set its remaining
capacity cr(i) = ci; and for each j ∈ B,
set cr(j) = cj

2. For each i ∈ A and j ∈ B, set xij = 0

3. Break ties in all preference lists
arbitrarily

4. While there is i ∈ A with cr(i) > 0 and
Pi 6= ∅

(a) let j be the neighbor at the top of
the preference list Pi

(b) set i and j to be engaged and
Pi ← Pi \ {j}

(c) let i1, · · · , ir, i, ir+1, · · · , is be the agents
in A engaged to j where Lj(i1) < · · · <
Lj(ir) < Lj(i) < Lj(ir+1) < · · · < Lj(is)

(d) let xij = min
{

cr(i), cj −
∑r

k=1 xikj

}

(e) let cr(i) ← cr(i) − xij and cr(j) ← cr(j) −
xij

(f) if cr(j) ≤ 0

• if xij +
∑r

k=1 xikj ≥ cj, denote i` to
be i

• else
– let i` = arg min`

{

xij +
∑`

k=1 xikj ≥ cj

}

– let cr(i`) ← cr(i`) + xi`j −
(

cj − (xij +
∑`−1

k=1 xikj)
)

– let xi`j = cj −
(

xij +
∑`−1

k=1 xikj

)

• for each strict successor i′ of i`
on j’s list Pj

– let cr(i
′)← cr(i

′) + xi′j

– break engagement between i′ and j

– let Pi′ ← Pi′ \ {j} and Pj ← Pj \ {i
′}

5. Output assignment X = (xij)

