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Abstract

The social lending market, with over a billion dol-
lars in loans, is a two-sided matching market where
borrowers specify demands and lenders specify to-
tal budgets and their desired interest rates from each
acceptable borrower. Because different borrowers
correspond to different risk-return profiles, lenders
have preferences over acceptable borrowers; a bor-
rower prefers lenders in order of the interest rates
they offer to her. We investigate the question of
what is a computationally feasible, ‘good’, alloca-
tion to clear this market.

We design a strongly polynomial time algorithm
for computing a Pareto-efficient stable outcome in
a two-sided many-to-many matching market with
indifferences, and use this to compute an allocation
for the social lending market that satisfies the prop-
erties of stability — a standard notion of fairness
in two-sided matching markets — and Pareto ef-
ficiency; and additionally addresses envy-freeness
amongst similar borrowers and risk diversification
for lenders.

Introduction

Social lending, or peer-to-peer lending, which allows vt
uals to lend and borrow money to each other directly withoutargest social lending sites on the Web.

they would like to lend their money to — one lender may pre-
fer high-risk-high-return borrowers, while another mag-pr
fer safe borrowers albeit fetching lower interest rates. On
the other hand, borrowers also have implicit preferences ov
lenders since different lenders can offer different irderates

to the same borrower: a borrower simply prefers the lenders
who offer him the lowest rate.

We now have a large two-sided matching market where
agents on both sides have multiunit capacities, and prefer-
ences — lenders have preference rankings (possibly wi tie
over the set of acceptable borrowers they're willing to lemd
and borrowers have preferences over lenders based on their
offered interest rates. But the preferences of all thesatage
may be conflicting — many lenders may compete to lend to
the same borrower who is their common top choice, while this
borrower’s preference might be an entirely different lende
who offers him a lower interest rate, who in turn has a dif-
ferent top borrower choice. Clearly, it need not be possible
to make all agents simultaneously happy, raising the nlatura
question of what constitutes a ‘good’ assignment. In this pa
per, we investigate the social lending market from a compu-
tational social choice perspective: what is a fair and efiti
way to clear this marketplace, and how can it be computed?

Our contributions. We present a modeg?) for the social
lending marketplace based on Zopa (www.zopa.com), which,
with over400, 000 members and®100 million in its markets
and over£100000 tradedeach dayis the first and among the

the participation of banks, is an exploding business onrthe |  We first address the question of what is a desirable allo-
ternet: the total amount of money borrowed using such peeration in the social lending market §8, and argue that an
to-peer loans was approximateig50 million in 2007, and is  allocation that is stable, Pareto efficient, fair amonggu&a’
projected to reach5.8 billion by 2010. borrowers, and also addresses the need for risk diversificat
The social lending market consists of borrowers seekindo reduce default risk is a desirable solution concept ia thi
some target loan amount (their demand), and lenders seekimgarket. We then address the question of finding an algorithm
to invest some fixed amount of money in loans (their bud-that returns such an allocation§#.
get). Lenders usually prefer to invest their budget in multi  When preference lists contain ties, as in our social lend-
ple borrowers’ loans to spread risk from defaulting borrow-ing context, not all stable matchings are Pareto efficient.
ers, and each borrower’s loan is also usually funded by mulThe question of how to find a Pareto-stable matching when
tiple lenders. Borrowers are ‘non-homogeneous’ — differen preferences contain ties has recently been addressedefor th
borrowers have different characteristics such as cretiitga many-to-one matchingnodel in [Erdil and Ergin, 2008;
and desired loan length, and command different interess rat 2009. A naive adaptation of this algorithm to omrany-to-
based on their creditworthiness. That is, different bom@v manymarket returns a Pareto-stable assignment in time that
correspond to investments with different risk-return pesfi  scales with the total capacity of all nodes in the graph,
As a result, lenders havareferencesver which borrowers the amount of money traded in the market, requiring us to de-



velop a new algorithmic approach. We design a strongly poly-These preferences need not be strict and the lender can be
nomial time algorithm for computing a Pareto-stable outeom indifferent betweeni.e., equally prefer, two different invest-
in a many-to-many matching market with indifferences, andments; that is, preference lists can have ties. Since ttfe pre
apply it to a reduced marketplace where ‘identical’ borrsve erence list is restricted tis neighbors i(e., acceptable bor-
are grouped into equivalent classes or ‘categories’; wa therowers), it is naturally incomplete. (As an example, lender
reallocate amongst categories to achieve fairness amongsteferences, denote®l = ([j1, j2], [Js, ja, js]), could be as
borrowers and risk diversification. The overall runtime isfollows: i is indifferent betweery; andjs, and prefers both
polynomial in the number of lenders and the number of bor-of them tojs, j4, j5 among all of whomi is indifferent; she
rower categories, which is a small constant (=10) for theaZop finds all other borrowers unacceptable.) In general, a lende
marketplace. can also have preferences over sets of investments; hgwever
Related work. Social lending is a relatively new application Nere we will restrict ourselves to expressing preferenees o
that has only recently begun to be addressed in the researf#flividual investments for simplicity _
literature, starting with the work ifFreedman and Jin, 20p9 Each borrowey has an implicipreferenceanking P; over
on default rates. Most of the research on social lendingstake/€nders based on the interest rates they offer hjrprefers
an empirical approach as[Rreedman and Jin, 20h9[Chen !engjers in non-increasing order of offere_d interest r&tle_!dJs
et al, 2009 analyzes the auction held for a single borrower'sindifferent amongst lenders who offer him the same interest
loan in the Prosper market, but does not address the sevef&@t€ (S0 borrowers’ preferencé$ can contain ties as well).
coexisting lenders and borrowers in the marketplace. To the We partition the set of borrowers into equivalence classes,
best of our knowledge, social lending has not been studie@r categoriesC' = {C1,..., Cr, }: two borrowers are equiva-
much from a marketplace design or social choice perspectivdent, i.e., belong to the same category, if no lender can dis-
There is a very vast literature on two-sided matching marfinguish between them based on the information available
kets and stable matching; for a review of the economic<bout them in the marketplace_. Thus, all lenders are indif-
literature on the subject, sd®oth and Sotomayor, 1992: ferent betvyeen the borrowg—zrs in a category, and offer thgm
Roth, 2008; for an introduction to the computer science the same interest-rate. This also means that borrowers in a
literature addressing algorithmic and computational guescategory all have the same preferences over lenders, and tha
tions, see, e.g., [Gusfield and Irving, 1989; lwama and a_Ienders preference list need only rank.categorles, rudt in
Miyazaki, 2008. The paper most relevant to our work vidual borrowers. The number of categ_orles can bQ as large as
from the stable matching literature[irdil and Ergin, 2008; the number of borrowers whepersonalinformation is pro-
2009, who study the algorithmic question of finding Pareto- vided by/about each borrower (as in Prosper), or very small
stable matchings for many-to-onenatching market; se4. when the only information revealed is the credit-rating and
The many-to-many setting is far less well studied in the staloan length (as in Zopa, which only allows lenders to specify
ble matching literature, and focuses largely on strucueal Interestrates for 10 borrower categories).

sults in settings without indifferences; see, datfield and Dive_rsifica_ltion to_decrease default risl_< is a very important

Kominers, 2010; Echenique and Oviedo, 2D06 factor in social lending. Instead of modeling this into thefp
erences of lenders, we deal with it as Zopa— Zopa breaks up

2 A Lending Market Model each lender’s budget into small sums each of which is lent

to a different borrower to diversify risk, so we will similgr
We model the social lending marketplagé as a bipartite ensure that each lender’s budget is uniformly spread antongs
graph with node$A, B) and edge#’. The nodes i repre-  many different borrowers in the final allocation.
sent the lenders and the noded3rare the borrowers. Nodes = We note that we do not model reserve rates, nor the dy-
on both sides have multiunit capacities: a lentlercapac- namic aspect of the social lending market in this work.

ity c; is her budget, the total amount of money she wants tq-gasjple assignmentsThe output of the market is a multi-
lend. A borrower;’s capacityc; is h|s_ demand, the total loan it pairing, orassignmentX = (x;)(; ;)c = betweend and
amount he wants to borrow. We will assume that the capacy | here;. ¢ NU {0} is the number of units assigned from
ities are integers by expressing them in the smallest unit of 6 Ato g B (whene; — ¢; — 1 for all nodes, an assign-
currency. Th?— edge sétof M is the set of pairgi, j) where ment reduces to matc%ing.]An assignmentX }s feasible
lender: is willing to lend to borrower;.

Iy ; . . if it simply satisfies capacity constraints on both sides,
e e e et eSSt e 5 Wi, < . and ", o, < ;. Note that the preferences
Zopa, this is the actual interest-rate that she will recene P, P; do not matter to the feasibility of an assignment.
any loans to that borrower. Note that each lender can offer

different interest rates to different borrowers, and thesa 3 What Is a Good Outcome?

borrower can be offered different interest rates by diffiére Having defined the set of feasible assignments, how do we
lenders. ) . choose one from amongst the very large number of possible
Every acceptable borrower, along with the specified interyssignments? An ideal solution concept for the social lendi

est rate, represents a possible investment for the lendBrRw - market would be Pareto efficient, fair — both across lenders
particular risk-return profile. Each lender hgsraferencdist

P; ranking the investments corresponding to these borrower- This is both for technical tractability and to avoid eliciting com-
interest rate pairg,e,, its neighbors{j € B : (i,j) € E}.  plex combinatorial preferences from lenders.



and borrowers, as well as amongst similar borrowergx—  them.
ist for every instance of the input, and be efficiently com- We note that another natural solution concept, maximum
putable (since social lending markets transact huge areounsize assignmenti.¢., the one with the largest trade volume),
of money, it should be implementable in time that dependss unsuitable here since it ignores all agents’ preferences
only on the number of agents, not on the money being tradethe maximum-sizatableassignment is NP-hard to compute
in the marketplace). What assignment has these properties?lwamaet al, 1999. However, it is easy to show that the size

A very widely used solution concept in two-sided matchingof any stable assignment (and therefore also our assighment
markets is that oftability [Gale and Shapley, 1982there s at least half the size of the maximum size assignment.
is no pair of individuals thaboth strictly prefer each other The assignment we propose to clear the social lending mar-
to some partner they are currently assigned to (such a paket is the following.
would be called a blocking pair). Stability can be interpret
as a notion of fairness in our context — while it is not possi- | MARKET CLEARING ASSIGNMENT. Given a lending market
ble to guarantee each lender her most preferred allocation, | M = (A, B) with categorie< = {C1,...,Cm}:
stable allocation is fair in the sense that if a lender indeed 1. Create a meta-borrower for each Cate@;w\/ith demand

sees a better allocation, that allocation does not alse ‘pre > jec, ¢, and the same preferences as those of borfow-
fer’ her in return. However, when preference lists contain ers inC,.. Denote the resulting market lgyl, C').

ties as in our case, it is well-known that stable matchings| Compute a Pareto-stable assignmafit = (z7. ) for
need not bePareto efficienteven when all nodes have unit (A, C), wherez?.. is lenderi’s total investment in cate-
capacity [Roth and Sotomayor, 1992as the following ex- gory C, (54).

ample shows. Therefore, we will need to explicitly require . .
that the solution is both stable and Pareto efficient; sueh as 3. Assign each lender's investmenls, across all borrowr
! ers in category,. to ensure diversity and envy-freeness;

signments are calleBareto-stableassignment§Sotomayor, denote the final assignment by= (y:;) (54).
2009. However, as the next example shows, applying the
concept of Pareto stability directly to the marketplda¢emay

not produce very desirable solutions: a solution may well be ) ] )
Pareto-stable, but hand out very different interest ratéwo ~ Theorem 3.2(Main). The final assignmerit” = (y;;) can
identical borrowers, violating our fairness requirement. be computed in tim@ (| A|* + | A]| B|) and has the following

Example 3.1. There are two lenders , i and two borrowers propertles.:. _ o o
41, j2 with two units of supply/demand each. Both lenders 1. Stability: There are no blocking pairs in the original

We have the following result about this assignment.

are indifferent between the two borrowers; the first lender marketplacel = (A, B).
offers 7% to both borrowers, and the second lendeoffers 2. Pareto efficiency: No agent i can be made better off
15% to both borrowers. The matching whejelends both without making some other agentiiti strictly worse off.

units toj; (at 7%), andi, lends both units tg, (at 15%) is ) . .
stable and also Pareto efficient. However, the matching eher S é\fl\/:r?k)o?r?gygﬁfonegf:nl\!? bccgtré)m(/)eir envies the allocation
both lenders lend one unit to each borrower is also Pareto- any ! Dorfowerin Its category.

stable and ‘more fair’ since botjy andj» get equal amounts 4. Diversity: Given the allocations(* = (zj. ), each

of the low and high interest rates (note that this matchingsdo lenderi spreads her budget amongst the maximum num-
not Pareto-improve the previous matching since it makes ber of distinct borrowers.

strictly worse off). In addition, each lender spreads heaxrlo

across more borrowers, so diversity improves as well. 4  Algorithm

This example illustrates that we cannot simply apply thewe will first address the problem of efficiently finding a
solution concept of Pareto stability directly to the soald-  Pareto stable assignment in an abstract two-sided many-
ing marketplaceM. Instead, we will consider a modified to-many matching market with separable responsive prefer-
market, where the lender side is unchanged but borrowersnces, and then apply the algorithm we develop to the modi-
are aggregated by category into ‘meta-borrowers’, with defied marketplace with lenders and meta-borrowers.
mand equal to the aggregate demand of that category (re- We begin with some formal definitions. Recall that we
call that a category can consist of a single borrower, whemave a two-sided matching markéf = (A, B) with pref-
there is plenty of information about borrowers in the market erence listsP, and multi-unit capacities,, for all agentsk,
place). We will first find a Pareto-stable assignment in thisandk’s preference over sets is the natural (partial) order de-
reducedmarketplace— how to find such an assignment is thefined by the preferenceB, over individuals as idErdil and
key technical problem we need to solve— and then distributg&rgin, 2008; 200R We can assume without loss of general-
each lender’s allocation to a meta-borrower amongst all théty that|A| = |B| = n by adding dummy isolated nodes with
borrowers in that category to ensure envy-freeness amongst = 0 to the market.

2A simple example consists of two men and two women, WhereDefinition 4.1 (Level function) We use the functioh;(-) to

iy strictly prefersji to j», but all other nodes are indifferent amongst €ncode the preference list of a node A. For eachj € P,
their possible partners. The matchifig, j»), (i2, 1) is stable, but 1€t Li(j) € {1,...,n} denote theankingof j in i's prefer-
not Pareto efficient sincé, can be reassigned ta andi, to j,  ence list. Therefore, for any, ;' € P;, if L;(j) < L;(j'),
without making anyone worse off. theni strictly prefers;j to j/; if L;(j) < L;(j'), theni weakly



prefersj to j'; if L;(j) = L;(j'), theni is indifferent be- the same amount from, to j; for eachk = 1,...,¢in the
tweenj and j’. The definition of the level functiab; (-) for ~ augmenting path to obtain a Pareto improvement dvei

eachj € B is symmetric. similar Pareto improvement can be obtained for augmenting
cycles.
Stability. We say that an assignmefit = (z;;) is stable if yWe have the following easy lemma.

there is no blocking paifi, j), i € Aandj € B, (i,j) € ) i

E, such that both and j have leftover capacityor i has ~Lemma 4.3. Any feasible assignmedf that has no aug-
leftover capacity and there i§ z;,; > 0, such thaj strictly ~ Menting paths or cycles is Pareto efficient.

prefers: to ' (or similarly for somey); or there are’ andj’, . .
21 > 0andz;; > 0, such that strictly prefersj to j/ andj 41 Computlng a Pareto Staple ASSlgnm(?nt

strictly prefersi to i’. Note thatbothmembers of a blocking We now give a strongly polynomial time algorithm to com-
pair must strictly prefer to trade with each other. A stablepute a Pareto stable assignment. Note thaXifs a sta-
assignment always exists, and can be found (efficiently)gusi ble assignment, reassigning according to any augmenting
avariant of Gale-Shapley algorithi@ale and Shapley, 1962 path or cycle ofX preserves stabilityi.e., any assignment
for computing stable matchings. Y that Pareto-dominates a stable assignmi€ris stable as
Pareto efficiency. Given an assignmenk = (z;;), let well [Erd”ﬁmd Ergin, zo_or]]a Togte;tlher with Lemma Aélsﬁyg:ls
(0) = 35 1,0 7 b the number of units ofs ca- £ AR S e pathe and cycles un
pacity that is assigned at levels no worse thaandz; (5) = gmp gaug gnp Y

X . . tilno more improvements are possible, will result in a Raret
>_i 1, (i)<p Ti; De the number of units gfs capacity thatis o0 assignment.

assigned at levels no worse thdn We say thatX is Pareto  How do we find such augmenting paths and cycles? First
such thaty;(a) > z;(r) andy;(8) = x;(8), foralli,jand  for all 4, j, where an assignment degenerates to a match-
a, 8, and at least one of the inequalities is strict. Thakiss  jng. Given an existing matching, define a new directed bi-

not Pareto-dominated by any other assignment where at leaghtite graph with the same nodes, where all forward edges

one agent is strictly better off and no one is worse off. are “weak improvement” edges with respect to the existing
Pareto stability. A feasible assignment is calldéareto- matching, and backward edges correspond to the pairings in
stableif it is both stable and Pareto efficient. current matching. Then we can find augmenting paths by in-

Recall that when preference lists contain ties, a stabléroducing a source and sinks that link to unmatched nodes
matching need not be Pareto efficient. The following defini-on each side and findingt paths in the resulting network.
tion is critical to our algorithm for Pareto-stable assigmn Augmenting cycles can be found by a similar construction.

oo 2 urring o v Cvenan .15 g et % Toveio e
signmentX = (z,;), & Sequencéio, ji, i1, . -, je, ic, jes1) pt ot fmp J

is anaugmenting patff the following conditions hold: since a hode can have mu_ItlpIe partners in an assignment, a
particular edge can be an improvement for some part of that
* @i, < o andwj,,, < ¢, node’s capacity and not for some others. For instance, sup-
e 1z, >0fork=1,...,¢ poze that nodﬁ}(\./\t/;tth_ ct,»I = 2)fis ma‘ichedtto.nogreiﬁ a(ndjg),
) ) . ) and suppose thatstrictly prefersj; to j; to js. Then,(i, jo
o Liy(jk) = Liy (1) @nd L, (ik-1) < Ly, (ik) or k= \yould only represent an improvement relative(tojs ), but
1,...,L not with respect tds, j;), both of which exist in the current
A sequencéiy, ja, io, . .., Je, ie, J1, 01 IS @anaugmenting cy-  assignment. An obvious way to fix this problem is to make
cleif the following conditions hold: copies of each node, one copy for each unit of its capacity, in
oz . >0fork—=1 / which case improvement edges are well-defined — each unit
e dk T of capacity is associated with a unique neighbor in any as-
® L (k) 2 Lix (1) @ndLy, (ig—1) < Ly, (ix) fork = signment. However, this new graph has siZgc; + 3 ¢;.
L,..., ¢, whereip = i¢andje1 = ji. leading to a runtime that is polynomial iv, ¢; + 3, ¢,
¢ At least one of these inequalities is strictijlfis such a  which isexponentiain the size of the input.
node, we say the augmenting CYCIG Is associatedyith Construction of networks. In order to define improvement
atlevelL, (jx) (@nd similarly forjy..) edges in this setting with multiunit capacities, we will ate
Since our nodes have preferences in addition to capacitieg, new augmented bipartite graghfrom the original bipar-
augmenting paths and cycles mirsprove not just the size tite market)M and the preference list8,. The vertex set of
of an assignment but also its qualiys given by node prefer- G will consist of copies of each node i, whereeach copy
ences. The first condition in the definition of the augmentingrepresents a level on that node’s preference Nge then de-
path says that the capacitiesigfandj,; are not exhausted. fine forward and backward edges between the vertices: for-
The second condition says that there is a positive allogatioward edges are the (weak) improvement edges, while there
from iy, to ji in the current assignmetX, and the last con- is one backward edge for every ed@ej) € F correspond-
dition says that, weakly prefersj,; to ji andj, weakly ing to: andj’s levels in P; and P;. This augmented graph,
prefersi;_q to ix. Thus, we can inject (at least) one unit which is assignment-independent and depends only on the
of flow from i,_; to j, and fromi, to j,+; and withdraw preference lists of the nodes, is then used to define a seguenc



of networks with assignment-dependent capacities which we. > L;(j) and 8 > L;(¢). Further, we connecf(g) — t

will use to find augmenting paths and cycles.
Definition 4.4. Given the marked/, constructG as follows.

e \ertices: For each nodé € A U B, we introducen
new verticesl'(i) = {i(1),...,i(n)}, wherei(a) cor-
responds to thew-th level of the preference list of (If
i hask < n levels in his preference list, it suffices to
introducek verticesi(1), ..., i(k); here, we use: levels
for uniformity.)

e Edges: For each paifi,j) € F, leta = L;(j) and
B8 = L;(i). We add eackwardedge betweei(«) and
j(08),i.e.,5(B) — i(«). Further, we add dorwardedge
i(a) — j(B') for every pair of vertices$(«') andj(5)
satisfyinga’ > aandg’ > S.

with capacityz;; for eachj(3) satisfyinga < L;(j) and
B = L;(i). The networkid; 3(X) is defined symmetrically.

We will use the networlf to find augmenting paths with
respect to an existing stable assignm&ntObserve that the
only edges from the source with nonzero capacity are those
that connect to a node € A with leftover capacity; sim-
ilarly, the only edges to the sink with nonzero capacity are
from a nodej € B with leftover capacity. Sending flow from
stotin H therefore involves increasing the total size of the
assignment while maintaining quality, exactly as in an aug-
menting path forX'. Similarly, we will use the network#; ,,
andH; s to find augmenting cycles associated witnd; at
level o and 3 respectively. Consider any flow fromto ¢ in
Hi,a! Say,

Figure 1 gives an example of the construction of graph

G, whenM contains two lendersg;, i and three borrowers

Jj1,J2, j3 (node preferences are specified next to each node i

the top figure, e.g.. is indifferent betweery; andj,, and
prefers both of them tgs). The figure on the right illustrates

the verticesT'(-) of G and the backward edges; the figure
on the bottom left shows the forward edges between the tw

groups of vertice§d (i) andT'(j3) in G.

2
gr s ([insia])
2
2 ¢ ([in,i2])

S 3
(J1,d2) + @
2
([1sg2)s da) = i 1
gz ¢ (i2)
Social lending market M
(values on nodes are their capacities)

Construction of graph G

Figure 1: Construction of grap.

Note that the construction aff is completely indepen-
dent of any actual assignmeft. We next define the net-
works H, H; ., H; g, whose structure is based ¢hand is

assignment-independent, but whose edge capacities depend

on the assignment’.

Definition 4.5 (Network H, H; , andH; g). Given the graph
G and an assignmenk = (z;;), let G(X) be the network
where all forward edges i are assigned capacityo, and
all backward edges are assigned capaaity. We usez(X)
to define the networkd (X)), H; .(X) andH; 3(X) for each
1€ Aandj € B,anda, 3 =1,...,n, as follows.

For H(X), include a sources and a sinkt; further, for
eachi € Aandj € B, add an extra vertex,; andh;, respec-
tively. Connect — h; with capacityc; —;, andh; — t with
capacityc; —x;, wherex; = > x;; andz; = 3, z;;. Fur-
ther, connect; — i(«) with capacityco for a = 1,...,n,
and connecjj(3) — h; with co capacity ford =1,...,n.

For H; o(X), we add a source and a sinkt, and connect
s — j(B) with capacityco for each vertexj(3) satisfying

[57j1 (ﬁl)a 7;1(0‘1)’ s ’iQ(a2)7j2(ﬁ2)a t]

Ve know thata > L;(j1) (i.e, ¢ strictly prefersj; to all its
neighbors at level) and L;, (i1) = 81 > Lj, (3) (i.e, j1
weakly prefersi to ;). Further, we havex < L;(j2) (this
implies thati strictly prefersj; to j2) and Lj, (i2) < G2 =
%jz (i) (i.e, jo weakly prefersiy to 7). That is, flows from
stotin H;, correspond to augmenting cycles for nodat
levels less than or equal toin X (and similarly forH; ).

Our algorithm, summarized below, finds maximum flows
in all the constructed networki$, H; , andH; g to eliminate
augmenting paths and cycles.

PARETO STABLE ASSIGNMENT(ALG-PS)
1. LetX be an arbitrary stable assignment
2. Construct networks?(X), H;,«(X) and H; g(X), for
eachi € A,j € B,anda,8=1,...,n
3. ForH, H; . and H; g constructed aboveH to be exe-
cuted first)
(a) Compute a maximum flo#” = (fy,) fromstot
(if there is no flow from vertex: to v, setf,, = 0)
(b) For each forward edgga) — j5(3),
letzi; = 2ij + fia)io)
(c) For each backward edgés) — i(a),
letzi; = zi; — fi@)i(a)
(d) If the graph isH;, o
o Letx;; = xi; + fo;(p) foreachs — j(3)
o letwy; =z — fj(g)t for eachj(ﬁ) — i
(e) Ifthe graphisH; s
o Let Tij = Tij — fsj(@) for eachs — Z(Oé)
o Letx;; = zi; + fj() for eachi(a) — ¢
(f) Update capacities for next graph to be executed
cording to new assignmet{

4. OutputX (denoted byX™)

ac-

Analysis. To prove that AG-PS indeed computes a Pareto-
stable assignment, we need to show two things—first, that the
assignmentX* returned by the algorithm is stable; this fol-
lows easily from stability of the original assignment andtth
reassigning according to augmenting paths and cycles pre-
serves stability.



Second, we need to show th&t" is Pareto efficienti.e., on only a small number of borrowers in typical social lending
no further Pareto improvements are possible when the algamarkets", ., |Px| = O(n) leading to runtimeO(n*).
rithm terminates. The difficulty here is that the assignment Computing the Market Clearing Assignment. Having
X changes through the course of the algorithm, and thereforeomputed allocationX™* = (z} ) between lenders and bor-
we need to show that, for instance, no other augmenting pathrswer categories using algorithm,a-PS, we now need to
can be found after the netword has been executed, even allocate the amount;, amongst borrowers it,. Note
though the assignmerd that was u_se_d to define the netwo_rk that by feasibility of X* for (4, C), we haveZieA Tio <
H(X) has been changed (and similarly for all augmentingy~__ . ¢;. We simply dividez;., amongst borrowers it
cycles). Thatis, while we compute maximum flowsHi{ X ) propo'rtional to their demands:
to find all augmenting paths for a given assignm&ntwe
need to show that no new augmenting paths have showed
up in any updated assignments computed by the algorithm.
Similarly, finding (i, «) augmenting cycles vidl; ., (X) for ] o ) )
someassignment does not automatically imply that no fur- This allocation is feasible sincd ;. vi; = =j., and
ther (i, ) augmenting cycles will ever be found anyof > ;.4 ¥i; < ¢;. This assignment” = (y;;) can be proven
the (different) assignments computed through the course dp satisfy all the properties claimed in Theorem 3.2 for the
the algorithm, since the assignments of all nodes can changstual marketplacé/ = (A, B), and is our desired output.
each time when a maximum flow is computed, leading to the
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BE PARETO EFFICIENT) There are two lenders;, i, and
two borrowersjy, jo with unit supply/demand each. Lender
i1 prefersjs to j; and all other agents are indifferent between
the two alternatives. The stable matchifg, j1), (2, j2) has
the maximum possible sizeybut is not Pareto efficient as it
is Pareto-dominated by the matchig, j2), (i2, j1), where

[Yanagisawa, 2007H. Yanagisawa. Approximation Algo-  ng one is worse off and| strictly improves her assignment.

rithms for Stable Marriage Problem®h.D. Thesis, Kyoto
University, 2007.

B Missing Proofs: Algorithm ALG-PS

; By the flow decomposition theorem, any feasible flow in a
A Other Solution Concepts network can be decomposed into the sum of flows on paths
Here we briefly discuss other candidate solution conceptsrom s to ¢, and flows around cycles. Therefore, the reassign-
and justify our choice of assignment. Given that one ofments defined by Step 3 in the algorithm can be decomposed
the challenges of the social lending marketplace is to ataccording to these individual flows along paths and cycles as
tract lenders, one possibility is to seek a lender-optirted s well. In the following discussion, for each maximum flow in
ble assignment, which is best for every lender amongst the7, H, ., and H; 5, we will consider each such component of
set of all stable assignments. However, it is well knownthe decomposed flow separately for clarity of exposition.

that when preferences contain ties, a lender-optimal stabl Further, consider anys-t flow in H;,, F =
matching is not well defined, and need not exist. A naturals, j;(3),...,j2(32),t]. The reassignment in Step 3(d) in-
weaker solution concept is to seek a stable lender-Pareto gects flow from: to j; and withdraws the same amount of
ficient assignment— an assignment that is stable assignmefibw from i to j,. Hence,F is equivalent to a pseudo-flow
and Pareto efficient for lenderisg., there is no other assign- F’ = [i(a), j1 (1), - . -, j2(B2), i(c)], which is around a cy-
ment which constitutes a Pareto improvement for lenderscle. The same argument appliesste flows in H; 5. There-
However, as Example 2.31 i{Roth and Sotomayor, 1992 fore, to simplify our discussion, we assume (without loss of
shows, such a lender-Pareto optimal solution again need ngenerality) that all flows irff; , and H; s are around cycles.
exist. Erdil and ErginErdil and Ergin, 200B consider an

even weaker solution concept in the context of school choiceB.1  Feasibility and Stability

They propose choosing a stable assignment such that therewe first argue thatX* returned by the algorithm is a fea-
no otherstableassignment which is a Pareto improvement forsjple assignment, and is a Pareto improvement dgr.e.,
lenders. This solution concept, however, while meaninigful every node’s assignment during the algorithm will only be
the original context of school choice, unfairly penalizes-b  enhanced (i.e. never get worse off). We consider flows along
rowers at the expense of lenders, as the following examplpaths and cycles respectively.

shows. . . . . . .

L L4 TheﬂOW|S[Zl(a1)7,72(52)v"'7]@(&2)7ZZ(OCE),]l(ﬁl)aZl(al)]n
Example A_.l. Th_ere are two lenders, i, and tW(_) borrow- which is around a cycle in eithd, H; ,, or H; 3.
ers ji, j2 With unit supply/demand each, whefeis a low- — Feasibility. By the flow conservation constraints

risk borrower andj; is high-risk. Assume that offers an in-
terest rate of 8% tg, and 17% tgj,, and prefergj; to j; (i.e.,

the high-risk high-return investment); arng offers 5% toj,

and 10% toj,, and is indifferent between these two. Then the
matching{ (i1, j1; 8%), (i2, j2; 10%)} is stable, but is Pareto-
dominated, from the perspective of the lenders, by another
stable matching{ (i1, j2; 17%), (42, j1;5%)}. But note that
the second matching gives borrowgr a loan with a very
high interest-rate (17%), even though there are lenders who
are willing to lend toj, at a much better interest-rate.

Another family of solution concepts is based on total size
or weight. First off, we note that aggregate solution cotgep
such as maximum flow or minimum weight flow or maxi-
mal flow completely ignore the lender-specified preferences
and indeed, it is not hard to see construct simple examples

where the assignments produced by such aggregate solution

concepts are disliked by both lenders and borrowers. Next, a
maximum size stable assignment does not necessarily guar-
antee Pareto efficiency (see the example below). Furthsr, it

in general NP-hard to compuk¥anagisawa, 20J7even for

the unit node-capacity setting. Therefore, it is not suddr
applications like social lending with massive data input.

e The flowF = [s, h;,i(a), ..

and the capacities defined on backward edges, the
total number of units for each vertex will not
change and still remains feasible.

Enhancement. By the construction of the graphs,
we know that for each forward edgg(ax) —
Jer1(Brs1), B = 1,..., 0 (wherejo1(Ber1) =
J1(B)) Li, (Jrt1) < ap and Ly, (ix) < Bryr-
Further, since each,(8x) — ix (k) is a backward
edge, fork = 1,...,¢, we haveL;, (jx) = a; and

L;, (ix) = Bx. Hence, after reassigning the assign-
ment (withdraw units from backward edges and in-
ject the same amount on forward edges), each ver-
tex gets an assignment at least as good as its previ-
ous assignment.

., 3(8),hj,t]isfromstot

— Feasibility. Since the capacity on edge— h; is

¢; — x; and the capacity on edgg — tisc; — x;,
the new number of units.é., flow) injected into:
andj is upper bounded by; — x; andc; — z;,
respectively. Hence, the total assignmeni ahd



j is still feasible. For any vertex betweefw) and

Proposition B.3. There is no augmenting path after graph

J(B) in F, similar to the discussion above, the total is executed in step 3 &fLG-PS

number of units assigned will not change and it still

gives a feasible assignment.

Proof. Denote byX, the assignment used to defiig and

— Enhancement. By the same argument as above, tHet X be a assignment computed during the algorithm at some

assignment of all vertices betweefw) and j(3)

step afterH being executed. Assume otherwise that there is

will not get worse off. For the two vertices con- still an augmenting patl in X,

necting toh; andh;, we will only inject more as-

signment on andj, respectively. Hence, no vertex

is worse off after reassignment.

Lemma B.1. The solutionX™* returned byALG-PSis a sta-
ble assignment.

Proof. Let X = (z,;) be the stable assignment which is
used to initialize the algorithm. By the arguments above, we

know thatz} > x; andx;f > x;. Assume otherwise that

X* = (z7;) is not a stable assignment. Then there is a block-

ing pair (i, j) for X*, (i,j) € E. By the definition of sta-

ble assignment, we only need to consider the following thre

cases:

Case 1.¢; > z; andc; > 27, i.e. bothi andj have supply
and demand left inX*. Then¢; > z; andc; > zj,
which implies thati, j) is a blocking pair forX as well.

Case 2.¢; = xj andc; > 7. Since(s, j) is a blocking pair,
there must exisy; such thatz;; > 0 andi prefers;

,Jes iy Jogi)

Let g = Liy(j1), o = L4, (jx) @and B, = Ly, (i) for
k=1,....4,andBey1 = Lj,,, (ir). By definition of aug-
menting paths, we havé;, (ix—1) < Lj, (ix) = B and
ar = Ly, (jr) > Li, (er1), fork =1,... L.
Consider thes-t path corresponding t&:

2 Je(Be)s ielce), Jer1(Betr), t]
Since the structure of the network$, H; ., H; 3 are in-

P= [Z'Oajhilv' ..

F =[s,io(), j1(B1), i1 (1), - .-

dependent of the assignment, all forward edgdsy,) —

Jk+1(Br+1), as well as all backward edgés(0x) — ix (o)
are inH, as well ast; , andH; g.

First we will show that there is no augmenting path in the
assignmentX; computed right afte (X,) is executed by
the algorithm (note that we computed the maximum flow in
H(Xy), not H(X4), so this is not obvious). The argument
that shows that there is no augmenting path in any assignment

to j1. By the enhancement argument above, the levelsy returned after execution of any of tt€; , or H; s in the
of assignment of only improve in toX* relative toX . course of the algorithm is similar and is given next.
Hence, either; > x; or there is g, such thatz;;, > 0

andL;(j) < Li(j1) < Li(ja), i.e. i prefers; to jo. This e First suppose thaX is the new assignment immediately

implies that(s, j) is a blocking pair forX as well. The
case where; > z7 andc; = z is symmetric.

Case 3.¢; =z andc; = T} Similar to the above argument,
for agent, eithere; > x; or there igj’ such thatz;;» > 0
andi prefers; to j'; and forj, eitherc; > z; or there is
ai’ such thatz,,; > 0 andj prefers: to i’. These two
facts imply that(s, j) is a blocking pair forX.

Therefore, for each case, we get a contradiction. HeRce,

is a stable assignment. O

B.2 Pareto efficiency

In this subsection, we will prove that algorithm.4-PS out-
puts a Pareto efficient assignment.

Lemma B.2. Any assignmenX that has no augmenting path
and augmenting cycle is Pareto efficient.

Proof. For eachi andj, we construct a new market by mak-
ing ¢; andc; identical copies (with unit capacity each and the
same preference list), respectively. Note that the new etark
might contain exponential number of agents (but here we are
only concerned with its economic properties rather than-alg
rithmic computations). It can be seen that any Pareto efticie
assignment of the original market corresponds to a Pareto ef
ficient matching of the new market. By a claim proved by
Sotomayor Sotomayor, 2009 which says that a matching

is Pareto efficient if and only if it contains no augmenting
path and cycle, we know that the non-existence of augment-
ing path and cycle gives a sufficient and necessary condition
for Pareto efficiency for our setting as well. O

after H(X,) is executed. If all backward edges in,
Jx(Br) — ix(ax), have non-zero capacities #(X),
then the algorithm should be able to inject more flow
according toF’ while computing the maximum flow in
H(X,). Hence, there must be a pair, sayandjy, that
has no capacity op.(8x) — ix(ag) in H(Xp).

First suppose for simplicity that there is exactly one such
pair i, jr (the argument when there are multiple such
pairs is similar, as explained later). Since this back-
ward edge does have capacityAf(X), the algorithm
must have sent a positive flow, say fragia’) to jx(58')
while computing the maximum flow i (X;). (By

the reassignments of assignment in step 3(b) of the al-
gorithm, this will lead to a positive capacity on edge
Je(Br) — ir(ay) after the execution off (X,).) Note
thata’ > a4 and3 > (B,. Consider the flowF” in
H(X,) that injects flows throughy, (o) — jix(3).

— If F" is an s-t flow, then instead of using the
edgeir (o) — jx(8'), F' may follow ir(a’) —
Jr+1(Br+1) and the rest of edges if’; and in-
stead of using the edge_1 (ak—1) — jx(Bk), F
may follow iy (ax—1) — jx(8’) and the rest of
edges inF”. Since all other edges iR except the
backward edgéjy, ix) are feasible ind (X,), and
F' is a feasible flow inH (X)), the new flow ob-
tained by combining” and F’ as described is fea-
sible in H(Xj), and increases the flow fromto ¢
in H(X,), contradicting the fact that the algorithm
computed a maximum flow &l (X).



— If F’is aflow around a cycle, analysis is similar for grapl#{; 5.) The induction step

. . . _ uses an almost identical argument to show that if there is

Fo= i), jk(8),11(0h), 1(B), - an augmenting path aftéf; , (or H, 3), an augmenting

i (), 50(6),ik(a’) ] path can be shown to exist in the assignment used as in-
put to H; ., as well, violating the induction hypothesis.
The claim therefore follows by induction on the execu-
tion of all graphsH; , andH; g, for anyi € A, j € B,
anda, 6 =1,...,n.

i.e, throughF”, we inject assignment from), (a)

to j.(4'), thus increasing the capacity on the back-
ward edgej,(6x) — ir(ar). Note that the incre-
ment on the capacity of; (8x) — ir(ax) by F’ is

upper bounded by the capacities of all edges'in O
Observe that an equivalent way to travel through
[ik—1(Bk-1) i (Bk), i (@), jr+1(Br+1)] in F s Next we discuss removing augmenting cycles in Algorithm
to take a detour ALG-PS, and show that once netwdik ,, is executed by the
ir1(Br), 36 (B, (), 1 (BL), -+ - algorithm, there are no augmenting cycles for nodelevel
AR ACARTC AN a in any assignment computed by the_algorlthm t_henceforth.
)y Jr\Pr)s A )5 Th41\ k1 Note that the algorithm does not specify any particular orde

Note that the first and last edgé,_1(3x_1) — (in particular, om for a given node) in which theH; s are
Jx(B") andip(a’) — jri1(Bre1), are guaranteed to be executed. Also, observe that while the structure of the
to exist. Further, the capacity on these two edgedietwork H; , allows augmenting cycles of levelsss than

is infinite, thus the maximum possible amount of or equal to« to be found (since every with L;(j) > ais
flows on such detour is always at least the capacconnected to the sinf, it is only guaranteed that augmenting
ity of edgeji.(B8x) — ir(asx) increased by’. So  cycles of levelexactly equato a will never be found again
again, we can combin& and F” to obtain a flow through the remainder of the algorithm.

which is feasible inH (X,), and increases the to- A natural question is why it is necessary to link every
tal flow from s to ¢, contradicting the fact that the L;(j) > «, to the sink inH, , when executingd; , only
algorithm computed a maximum flow i (Xj). guarantees removing all augmenting cycles of lesectly
equal toa. The example below shows what happens if the
network H; ,, is defined to only include links to the sink for
nodes withL;(j) = «, i.e, to only try to find augmenting
cycles of levela: In this case, it is possible that there are
still augmenting cycles of level in the assignment computed
immediately afterd; . being executed. In our construction
when the network is defined to include the remaining links

If there are multiple backward edges ihwith zero ca-
pacity in H(Xy), the argument proceeds similarly; add
to F' the flows F] . corresponding to each of these
backward edgesi.é he ones that lead to increased as-
signment or(ix, ji)) to obtain a feasible flow i (X,)
that increases the total flow frosito ¢ giving a contra-

Jk
. 1

diction. : I
h . . h after th ._of level strictly less tham as well, this does not happen and
gfejr}ce, there is no augmenting path after the executlor}{i’a only needs to be executed once.

Next, we show that there is no augmenting path in an)%xample B.4. Suppose thatl = {i1,iz,i3,k} and B =

: . {Jj1,J2, 73, Ja, js }. All nodes except have unit capacity and
assignmentX” returned by the algorithm after execut are indifferent between all possible partners (i.e., haaé/ o

ing any of the graphsf; ., H;5. The proof proceeds gne level in their preference list). Nodehas capacity2,

by induction—the base case is to show that there is NJnd preference liSt[71. 751, Ljs jals Suppose we start
augmenting path in the assignment obtained after exe? ¢ P [j1, J5); 173, jal, j2).  Supp

cuting the firstH; , network afterH, given that there is with the (stablg)_ assignmemo whergk i.s ma.tch.ed t%"jB’
no augmenting path after executidg, The induction ~&nd the remaining assignments a@. ji), (i2, ja), (is, Js)

step shows that if there is no augmenting path after thénote there are no augmenting pathsXi). Consider finding

first H; ., is executed, there can be no augmenting pat he maximum flow in networK; , withoutthe link j, — ¢

_ , : or @ = 2. In this network, the total capacity of edges in-
after any latet/; ., or H; 5 network is executed as well, cident to the sink is 1, thus we can send at most one unit

Assume that the first graph executed aft€is H; », and o\ for examplek — j1 — i1 — jo — k — ju —
let X and X’ be the assignments before and after execut; ~ ", js — t (note that the twak's here correspond to
Ing Hi o r_espect;}v_ely. \fNe hrz]ave already shown thr?t IS NOgjitferent vertices inI'(k) in the network). After reassign-
augmgntlng pz?(t njga(tjert e execution off. So th'eLe ing assignment according to this flow, we obtain the new as-
must be a backward edge, sa¥/) — ix(ax), Which  gignmentx” (iy, jy), (iz, ja), (is, js ), (k. j1), (K, ja). But ob-
has zero capacity in the assignmetbut positive ca-  garye thaty still has an augmenting cycle at levifor node
pacity inX ,_the capacity of this ed_ge must have beenin-;.. ;. _ js — i5 — ju — k. However, with the original defi-
creased while computing the maximum flowfih .« (X) — pition of H; ., which linksj, — t, the maximum flow consists
through either an-¢ flow or a flow around a cycle. Sim- ¢ pushing flow along the pathis— j; — i, — j» — t and
ilar to the previous arguments, we can combine this flow;, _ s — i3 — ja — s — Jj3 — t, leading to the new
yv|th the augmentlng_path iX’ to obtaln_ an augment- assignmentX” = (i1, ja), (i2, j3), (i3, ja), (ks 41), (K, 55)

ing path forX. This implies that there is an augment- hich has no remaining augmenting cyclesfor

ing path after the execution @f, a contradiction. (The



Proposition B.5. There is no augmenting cycle associated
with 4 (resp. j) at level« (resp. ) after graph H; ., (resp.
H; g) is executed in step 3 #fLG-PS

Proof. We will only prove the claim fori € A and H; ,;
the argument forj € B and H; g is symmetric. Assume
otherwise that there is still an augmenting cycle

P= [Z - Z‘17j2; Z.27 e 7.j€a i@ujlail]
associated with at level « in some assignmenX’ com-
puted after executingl; »,(X). Letay = L;, (ji) andgy, =
L; (i) fork =1,...,¢. SinceP is an augmenting cycle as-
sociated withi; at levela, we havex = «y > L;, (j2). Con-
sider the cycle corresponding @ in the augmented graph
G:

F = [ir(on), j2(B2),d2(z), - . -, je(Be), ie(e), j1(B1), i1 ()]

(Since the structure off; ., H; g are assignment indepen-
dent, all forward edges, () — jr+1(Bk+1) @and all back-
ward edgesiy(8x) — ix(ax) are inH, , andH; 5.) Note
that in H; o, we haves — j2(02) andj;(81) — t. Denote
iet1 (1) = i1(a1) andjer1(Ber1) = j1(Br).

The proof is similar to the previous proposition; the only
difference is that we will separately need to consider thseca
k = 1, i.e, the backward edggj,, i) is the one whose ca-
pacity increases.

e First consider the assignmeit returned immediately
after executingH; . If all backward edgeg(5;) —
ir(ax) have non-zero capacities X, thenF is a feasi-
ble flow in H; ,(X) which increases the total flow from
s tot. Hence, there must be a pair, sayandji, which
has no capacity op(8r) — ix(ax) in H; o(X), but
has positive capacity itX’. Hence, the algorithm must
have sent a positive flow, say from(a’) to j.(5'),
while executingH, ,(X). Note thata! > a4 and
B > Bx. Again, suppose first that there is just one such
pair, and consider the flow’ that injects flows through

ir(a’) = je(0').

— Suppos&” is ans-t flow, i.e.

7j”(/8//)7ik(a/)vjk(ﬁl)a cee 7t]

If k& # 1, then instead of using the edgga’) —
Jk(8), F' may follow ix(a) —  jry1(Be+1)
and the rest of edges if; and instead of using
the edgeir—1(ax—1) — Jjr(Br), F may follow
ig—1(ar—1) — jr(8') and the rest of edges ifi'.
These flows are both feasible f; ,(X) and in-
crease the totad — ¢ flow, giving a contradiction.

If £k =1,ie. i, = i1 = 1, then we havex =
a; =ap <o =L;(j”)andp” = L;~(i). Hence,
we havej”(8"”) — t¢. Then we can truncaté”
atj”(8"”) and route it to the sink directly through
edge;”(8"”) — t; and re-routeF atiy_1(ax—1)
by following iy, 1 (ax—1) — jx(3') and the rest of
edges inft”. These new flows are both now feasible

F'=1s,...

— If F’ is a flow around a cycle (i.e.F’ does not
effectively contribute to the maximum flow from
tot),

Fro= Tig(a'), k(8 i (), 1 (81), - -

ir(0r), 3 (Br), in(a) ]
i.e, F' injects assignment from. (o) to j, (5'), in-
creasing capacity on the backward edgésd;) —
ix(ay) in X'. Further, the increment on the capac-
ity of ji(8x) — ix(ax) by F’ is upper bounded by
the capacities of all edges i
If & # 1, an equivalent way to travel through

lik—1(Bre=1), 3k (Br)s ik (), Jrv1(Breg1)] In Fis
to take a detour

ikfl(ﬁkrfl)»jk(/@/)vZ./l(all)vji(ﬁi% T
in (), 50 (Br) ik (@), g1 (Brs1)

Note that the first and last edgg,_1(Bk-1) —
Jr(8') andiy(a’) — jis1(Brs1), are guaranteed
to exist. Further, the capacity on these two edges
is infinite, thus the maximum possible amount of
flows on such a detour is always at least the capac-
ity of edgej.(8r) — ix(ay) increased by”. So
again, it is possible to construct a feasible flow in
H, ,(X) that increases the total flow.
If £k = 1, i.e. 44, = 41 = 1, then we have
a=oa =o <o = Li(j.) and s, = Ly ().
Hence, we have!(5.) — t. Then the following
flow combining " and F’

i1(0n), j2(B2),i2(a2), ..., Je(Be), ie(ay) —
Jk(B), 41 (ah), 31(81)s - - - s in (@), 30 (Br)

is feasible inH; (X), again leading to a contra-
diction.

Hence, there is no augmenting cycle associated with
at level o after the execution of grapH; ,. The argu-
ment for multiple pairgix, ji ) is similar to that sketched
for augmenting paths, and proceeds by adding the corre-
sponding flowsF”.

Assume that the graph executed right afgr, in step 3

is H;/(a'). Since there is no augmenting cycle associ-
ated with: at level« in the assignmenX returned af-

ter executingd; ., there must be a backward edge, say
Jr(Br) — ir(ag), which has zero capacity after the ex-
ecution of H; ; the capacity of this edge must be in-
creased by, (') through either an-t flow or a flow
around a cycle. As above, we can construct an augment-
ing cycle usingF that is feasible inX, contradicting that
there was no augmenting cycle afiéy .

Hence, there is no augmenting cycle associated wéh
level a after H;, (o) is executed as well. The analysis is sim-
ilar for graphH; g. The claim then follows by induction on
the execution of all graph#/; , and H; g, for anyi € A,
jeB,anda,8=1,...,n. O

Finally we provide the proof of the main result, Theorem
in H; ,(X) and increase total flow, a contradiction. 3.2.



Theorem B.6. The final assignmert’ = (y;;) can be com-
puted in timeO(|A|* + |A||B|) and has the following prop-
erties:

1. Stability: There are no blocking pairs in the original

marketplacell = (A, B).

. Pareto efficiency: No agent iy can be made better off
without making some other agentii strictly worse off.

of any other borrower in its category.

. Diversity: Given the allocations(* = (zj. ), each
lender: spreads her budget amongst the maximum num
ber of distinct borrowers.

Proof. Stability of Y in (A, B) follows simply from the fact
that X* = (zj, ) is a stable assignment oA, C') by The-
orem 4.7, and the observation that lenders are indifferent b
tween all the borrowers in a category.

For Pareto efficiency, it suffices to show thgt does
not contain any augmenting path or cycle (d, B) by
Lemma 4.3. First, sinc&* is Pareto efficient in4, C),

i and C,. cannot both have leftover capacity ang, is
distributed completely amongst borrowersGh for each:.
Hence, there can be no augmenting path where all borrow
ers belong only taC.,.. Similarly, there is no augmenting
cycle with all borrowers only fronC,. because ifj; € C,
gets a strictly better allocation, there must jye € C.
who is strictly worse off because all borrowers@h have

the same preferences over lenders. Therefore, there is no

augmenting path or cycle where all borrowers belong tq
the same categorg’,.. Now if Y contains an augmenting
path[ig, j1,%1,- . -, Je, te, Je+1] iIn market(A, B) wherej; be-

longed to at least two different categories, there is an aug
menting pathlio, Cy(j,)s i1, - - - Cr(j)y ie, Crj,s,,) N the

. (Weak) envy-freeness: No borrower envies the allocation

STABLE-ASSIGNMENT

1. For each i € A, set its remaining
capacity c¢-(i) = ¢; and for each j € B,
set ¢ (j)=¢

2. For each i€ A and je€ B, set z; =0

3. Break ties in all preference lists
arbitrarily
4. Wile thereis i € Awth ¢ (i) > 0 and
P #0
(a) let j be the neighbor at the top of
the preference list P
(b) set i and j to be engaged and
P — P\ {j}
(c) let 41, -+ ,ir,4,%r+1,--- ,is be the agents

(d)
(e)

(t)

in A engaged to j where L;(i1) < -+ <

Lj(ir) < Lj(i) < Lj(irt1) < --- < Lj(is)
l et z;; = min {cr(i), Ci— Y e xm}
let c (i) « ¢ (i) — zi; and ¢ .(j) «— e (j) —
Tij
if e (4)<0
o if Tij + 22:1 Tipj > ¢y, denote i, to
be i
e el se
- let i =argming {wi; + 2221 T > ¢}
—let c(ie) « cr(ie) + iy — (¢ — (wi; +
£—1
k=1 mikﬂ'))
{—
—let @iy =c;— (zi + X520 Tirs)
e for each strict successor 4
on j’s list P;
—let (i)« (i) +ziy
— break engagenent between i and j
—let Py — Py \ {j} and Pj — Pj \ {Z,}

of g

5. Qutput assignment X = (x;;)

virtual market(A4, C) as well, a contradiction. The same ar-
gument applies for augmenting cycles Ys@s Pareto efficient
in (A, B).

(Weak) envy-freeness follows immediately from the pro-
portional distribution ofr;. : let lender: offer interest-rate
p; to categoryC'., then the net interest-rate of afye C. is

ZieA x;'kcrpi
ZieA f?Cr

DicaYiiPi

> icA Yij

which is independent of his capacity. So all borrowers

in C,. get the same net interest-rate. The final claim about

diversity simply follows from formulgx). O

C Computing a Stable Assignment

Finally, for completeness, we include the algorithm to find a
stable assignment, which is a simple modification of the Gale
Shapley algorithm for stable matching; the fairly straight
ward proof is omitted.

Theorem C.1. Algorithm STABLE-ASSIGNMENT computes
a stable assignment.




