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Abstract. The Christmas gift exchange is a popular party game played
around Christmas. Each participant brings a Christmas present to the
party, and a random ordering of the participants, according to which
they will choose gifts, is announced. When a participant’s turn comes,
she can either open a new gift with unknown value, or steal an already
opened gift with known value from someone before her in the ordering;
in the second case, the person whose gift was stolen gets to make the
same choice.

We model the gift exchange as a sequential game of perfect information
and characterize its equilibria, showing that each player plays a threshold

strategy in the subgame perfect equilibrium of the game. We compute
the expected utility of players as a function of the position in the ran-
dom ordering; the first player’s utility is vanishingly small relative to
every other player. We then analyze a different version of the game, also
played in practice, where the first player is allowed an extra turn after all
presents have been opened—we show that all players have equal utility
in the equilibrium of this game.

1 Introduction

The practice of giving gifts to friends and relatives at Christmas is a centuries-
old tradition. Contrary to popular belief, gifts are not conjured up by Santa at
the North Pole, and the actual buying of gifts unfortunately must be done by
real people in real local marketplaces with no aid from Santa whatsoever. As
a result, the Christmas gift industry is now a huge multibillion dollar industry
much larger than online advertising, and is therefore clearly a subject deserving
of serious study.

The problem of Christmas gifting admits many interesting directions of re-
search drawing on various disciplines. For instance, the phenomenon of stores
beginning to play Christmas jingles annoyingly earlier and earlier in the year (to
subtly indicate gift-shopping time) is related to the phenomena of unraveling
markets studied in the economics literature [5]. Another obvious area is psychol-
ogy and sociology, analyzing the very noticeable impact of gifting and associated
customs on the behavior of otherwise normal individuals. We will, however, fo-
cus on a particular Christmas gifting tradition, the gift exchange, that leads
to increased welfare and significant computational and storage savings for each



gifter: instead of buying one gift individually for each giftee, every gifter brings
a single gift, which are then collectively exchanged amongst the group.

The gift exchange mechanism represents a significant improvement for gifters
over the tradition of buying individual gifts, since only 1 present need be bought
rather than n — that is, the number of gift-choosing problems that need to be
solved, and the fear struck by the prospect of Christmas gift shopping, is now
reduced to a constant rather than growing linearly with the size of an player’s
neighborhood in the Christmas-gifting-graph1. This also has the second-order
benefit of removing the incentive to limit the size of one’s social network due to
the large psychological and economic gifting costs, which in the limit could lead
to smaller and smaller tight-knit groups, eventually resulting in a catastrophic
unraveling of society. The gift exchange scheme also improves efficiency relative
to the scheme of one gift per neighboring node used widely in practice. Empirical
and anecdotal evidence suggests that most people, including the President [1],
believe they give better gifts than they get; the value obtained from the average
received gift is much lower than the sum of the costs of planning to buy, buy-
ing, and giving the gift (and recovering from the experience). Since each gifting
transaction leads to negative utility on average, welfare is maximized by mini-
mizing the number of transactions— this means that, subject to the constraint
that each person must receive a gift, the gift exchange mechanism actually has
optimal welfare.2

The protocol used to assign the n gifts amongst the n participants is known
by several different names including Chinese Christmas and White Elephant
gift exchange, and is a common party game around Christmas time[2–4]. Each
participant brings one gift (whose value is in some range prespecified by the
host) to the party, and the gifts are all placed in a pile (presumably under a
suitably large and well-decorated Christmas tree). We’ll assume that everyone
uses identical wrapping, so that they cannot identify the gift they brought once
it’s been put in the pile; the reason for this assumption will become clear once we
present our model. A random ordering of the participants is chosen, and when a
participant’s turn comes, she either opens a new gift, or steals an already opened
gift from someone before her in the ordering, in which case the person whose
gift was stolen gets to make the same choice. A person cannot steal back the gift
that was stolen from her immediately; also, to ensure that the last person is not
guaranteed to walk away with the best present, a rule that no present can be
stolen more than a certain number of times, say three or four times, is enforced.

1 This is based on the fairly reasonable assumption that the number of distinct Christ-
mas parties an player must attend and buy gifts for is 1 (or very small), that is, it
does not scale with the size of his Christmas-gifting neighborhood.

2 There is an interesting parallel between the VCG mechanism and the gift exchange
scheme — both mechanisms have excellent efficiency properties, but are nonetheless
not popular in the industry. While the reason for this is very obvious for the gift
exchange scheme (the gift producing industry has no reason to like this scheme
which leads to fewer gifts being bought), the case for the VCG auction is far more
interesting and subtle, see The Lovely but Lonely Vickrey Auction [6].



In this paper, we study this gift exchange mechanism from a game theoretic
point of view. Since the mechanism itself is rooted in tradition, we do not address
the question of whether or not this is a good mechanism to fairly distribute
the gifts. Rather, we analyze the game from the participants perspective, and
investigate best response— given the gift exchange mechanism, how best should
a utility maximizing partygoer behave? (We mean best behave not in the sense
of being on one’s best behavior at the family party, but rather from the point
of view of maximizing the expected value of the final present she goes home
with). To do this, we model the Christmas party gift exchange as a sequential
game where each gift’s value is drawn uniformly at random and unknown until
unwrapped, and use backward induction to reason about the behavior of each
player in this game. The problem becomes technically interesting because in
addition to not knowing the value of an unopened present, an player also has
to contend with the fact that his present may be stolen away from him in the
future, depending on its desirability.

The remainder of the paper is organized as follows. We first present a formal
model for the gift exchange game in §2, and then derive the best response and
equilibrium in §3. Our results allow us to quantify the benefit of drawing a
position towards the end of the list of participants, answering the question of
how loudly to sigh or squeal when learning of one’s position in the random order.
Finally, we analyze a version of the game with slightly modified rules where the
first player gets a chance to steal a present at the end if she has not done so
already; this version is also sometimes played in practice. In contrast with the
original version, all players have equal expected utility in the equilibrium of this
game.

2 Model

There are n players, and n unopened gifts. The gifts have a common value to
each player, that is, different players do not value the same gift differently (for
instance, this common value could be exactly the dollar value of the gift). Each
gift has a value vi drawn independently and uniformly at random from [0, 1].
The value of a gift remains unknown until the gift is opened, at which point its
value vi becomes known to all n players.

A random ordering is chosen amongst the n players and announced publicly—
this is the order in which players get to choose presents. We number the players
according to this order. We also adopt the rule from the actual party game that
each gift can be stolen only a limited number of times— we restrict the number
of times a gift can be stolen to 1, i.e., if a present has been stolen once, it cannot
be stolen again, and stays with its current owner. We will call a present that
has been opened but never stolen available, and an open present that has been
stolen once already unavailable. Limiting the number of times a present can be
stolen to 1 keeps the analysis tractable while still preserving the feature that an
player’s current choice affects the future decision of whether other players will
want to steal her gift in the future, affecting her final value.



When player i’s turn arrives, she has a choice between picking an unopened
present (with unknown value drawn UAR [0, 1]) from the pile, or stealing an
available present from the players 1, . . . , i− 1. If she opens a new gift, the game
proceeds to player i + 1. If she steals an open available gift from some player
j < i, j again gets a choice between stealing an available present and opening
a new gift from the pile (note that j cannot steal back her own gift since it
has been stolen once and is now unavailable). Note that when player i’s turn
arrives, there are exactly n − (i − 1) unopened gifts in the pile, and each player
1, ..., i − 1 has an opened gift. The game continues this way until there is only
one unopened gift, at which point player n takes her turn and follows the same
sequence. Define a step to mean each time a gift has a new owner: the game is
guaranteed to terminate in at most 2n steps, since there are n gifts, and each
gift can be stolen only once, corresponding to at most 2 steps per gift in the
game.

We analyze the gift exchange game G as a sequential game with perfect
information, where the players are rational utility maximizers— each player
tries to maximize the expected value of the final gift she is left with, given that
each player after her is a rational utility maximizer as well (the expectation is
taken over the random draws of unopened gifts). We point out that our model
assumes that players only value gifts and not time, and does not address players
who are running out of patience (or lacked it to start with), or want to get the
gift exchange over with quickly. These can be modeled with a discount factor;
we leave this as an open direction for future work. Our results also only apply
when there are no externalities— they do not, for instance, predict the outcome
of a game where your coworker five places down the line might steal your present
either out of love for the present, or hate for you. While these assumptions are
common in the research literature, they (especially rationality) may not hold in
practice — to ensure applicability in practice, it is adequate to have your fellow
partygoers read and understand the best response derived in §3, and instruct
them to act according to it, before starting the gift exchange.

3 Analysis of the Game

In this section, we analyze the equilibrium of the gift exchange game. Before
beginning with the analysis, we first make some simple observations about the
game. We define round i as the sequence of steps starting from when player i
first gets a turn to the step immediately before player i + 1 first gets her turn.
Note that a new gift is opened in the last step of a round (a round can have only
one step), and exactly one gift is opened in each round. Round i has no more
than i steps, and the entire game terminates in no more than 2n steps. The last
player plays exactly once; the player in the ith position in the ordering plays at
most n − i + 1 times. Once a player steals a gift, she never plays another turn,
and the value of the gift she steals is her final value from the game.

We now give a complete analysis of the game G. We prove that in the solution
of the game, each player plays according to a threshold strategy of the following



form: if the value of the most valuable available gift is at least θ (where θ is the
threshold), then steal that gift; otherwise, open an unopened gift. The value of
the threshold θ depends on which round in the game is in progress—specifically,
θ is a function of the number i of unopened gifts at the time. We define a sequence
θ1, . . . , θn recursively as follows:

θ1 = 1/2, θi = θi−1 −
θ2

i−1

2
for i > 1. (1)

Note that this recurrence defines a decreasing sequence. We prove the follow-
ing result.

Theorem 1. The following is a subgame perfect equilibrium of the gift exchange

game: for any player p and any time p gets to play, play the threshold strategy

with threshold θi, where i is the number of unopened gifts at the time. Fur-

thermore, the expected value that p receives by playing this strategy is equal to

max(θi, v), where v is the value of the most valuable available gift at the time.

Proof. We prove this by induction on i. We start with i = 1. This means that
at the time player p gets to play, only one unopened present is left. This player
has two choices: either to steal the most valuable available gift (of value v),
or to open the only remaining unopened gift, after which the game will end.
Since the value of a gift is drawn uniformly from [0, 1], the expected value of
opening the unopened gift is 1/2. Thus, the player must steal if v ≥ 1/2 and
open the unopened gift if v < 1/2. The value that this strategy gets is precisely
max(1/2, v).

Now, we assume the statement is proved for i−1, and prove it for i. Consider
the player p that is playing at a time that there are exactly i unopened gifts,
and the value of the most valuable available gift is v. At this point, p has two
options: either to steal the gift of value v, or to open an unopened gift. If p
opens an unopened gift, we denote the value of this gift by x, drawn uniformly
from [0, 1]. In the next step, by the induction hypothesis, the next player will
steal the highest value available gift if this gift has value at least θi−1. If she
does so, the player whose gift is just stolen will get to play, and again, by the
induction hypothesis, will steal the highest value avaliable gift if its value is at
least θi−1. This ensues a sequence of stealing the highest value available gifts,
until we reach a point that the highest value available gift has value less than
θi−1, at which point the person whose turn it is to play will open a new gift.

We now consider two cases: either the value x of the gift p just opened
is at least θi−1, or it is less than θi−1. In the former case, the sequence of
stealings will at some point include p. At this point, all the available gifts of
value more than x are already stolen. We denote by v(x) the highest value of
an available gift of value less than x. This is precisely the value of the most
valuable gift that is still available at the time that the sequence of stealings
reaches p. By induction hypothesis, at this point, the maximum value that p
gets is equal to max(θi−1, v(x)). In expectation, the value of p in this case is
max(θi−1,Exp[v(x)]), where the expectation is over drawing x uniformly at ran-
dom from [θi−1, 1].



The other case is when x is less than θi−1. In this case, since the sequence θ
is decreasing, by induction hypothesis the gift that p just opened will never be
stolen. Therefore, the expected value of the gift that p ends up with in this case
is precisely θi−1/2.

Putting these together, the overall value of p, if she decides to open a new
gift can be written as

(1 − θi−1)max(θi−1,Expx←U [θi−1,1][v(x)]) + θi−1 ×
θi−1

2
.

Now, we consider two cases: if v > θi−1, then we have v > θi−1/2 and
v ≥ v(x) (the latter inequality by the definition of v and v(x)). Therefore, the
above expression is less than (1− θi−1)v + θi−1v = v, meaning that in this case,
it is p’s optimal strategy to steal the gift of value v. In the other case (v ≤ θi−1),
by the definition of v(x), for every x ∈ [θi−1, 1], v(x) = v ≤ θi−1. Therefore, the
utility that p obtains by opening a new present can be written as

(1 − θi−1)θi−1 + θi−1 ×
θi−1

2
= θi.

Putting everything together, we obtain that the maximum utility p can obtain
is max(v, θi), and this utility is obtained by playing the threshold strategy with
threshold θi.

We cannot obtain an explicit formula for θi from the recurrence relation (1),
but the following theorem gives us the asymptotics.

Theorem 2. For every i, we have 2
i+2+Hi

≤ θi ≤
2

i+3 , where Hi ≈ ln(i) + γ is

the i’th harmonic number.

Proof. Let yi = 2/θi. The recurrence (1) gives us:

yi =
2

2/yi−1 − (2/yi−1)2/2
=

y2
i−1

yi−1 − 1
= yi−1 + 1 +

1

yi−1 − 1
. (2)

Thus, since the term 1/(yi−1 − 1) is non-negative, we have yi > yi−1 + 1, which
together with y1 = 4 implies that yi > i + 3, proving the upper bound on θi.
To prove the lower bound, we use the inequality yi > i + 3 we just proved in
combination with (2). This gives us yi < yi−1 + 1 + 1

i+2 . This implies yi <

i + 3 +
∑i+2

j=4
1
j

< i + 2 + Hi, proving the lower bound on θi.

That is, as we move along the random ordering, a player’s threshold for
stealing a gift keeps increasing: early in the game, players are willing to settle
for gifts of lower value than later in the game (recall that if a gift is stolen, that
gift’s value is the final utility to the player who steals the gift).

We make the following observations about the equilibrium play of the game,
which follow from the fact that the optimal strategy for each player is a threshold
strategy, and these thresholds increase through the play of the game:



– If a gift is not stolen immediately after it is opened, it is never stolen, since
the thresholds θ increase as the number of unopened gifts decreases.

– If a gift is stolen from a player, this player does not continue stealing, but
rather opens a new gift. That is, each round is of length at most 2, i.e.,
there are no ’chains’ of gift stealing in any round. Each player i stealing a
gift therefore steals either from i− 1, if i− 1 opened a new gift, or else from
the player j < i − 1 from whom i − 1 stole her gift (and who consequently
opened a new gift), in this case, all players j + 1, j + 2, . . . , i have stolen the
gifts opened by j.

Therefore, when players play according to their optimal strategy (the thresh-
old strategies prescribed by Theorem 1), the game will proceed as follows: first,
player 1 opens a new present. If the value of this present is less than θn−1, this
present will not be stolen by player 2 (and by no other player, since θn−1 < θi

for i > n − 1), and player 2 opens a new present; otherwise, this present will be
stolen by player 2, and player 1 will open a new present. In either case, if the
value of the newly opened gift is less than θn−2, it will not be stolen by player 3
(and therefore by no other player after that), and instead, player 3 opens a new
present; but if this value is greater than θn−2, it will be stolen by player 3, and
the player who used to hold that gift will open a new present, and so on. When
it is turn for player i’s to play for the first time, it must be that in the last step,
one of the players has opened a new gift (unless i = 1). If the value of this gift
is more than θn−i+1, player i steals it, and the player who used to hold that gift
will open a new gift. Otherwise, player i opens a new gift.

Given this, we can calculate the expected utility of each player in this game:
for every i > 1, when player i gets to play for the first time, the only way the
value v of the most valuable available gift is greater than θn−i+1 is if this gift
is the one just opened by the last player who played before i. This happens
with probability 1− θn−i+1, and in this case, the value of the gift is distributed
uniformly in [θn−i+1, 1]. Therefore, by Theorem 1, the expected value that player
i derives in this game is precisely

Exp[max(θn−i+1, v)] = (1−θn−i+1)×
1 + θn−i+1

2
+θn−i+1×θn−i+1 =

1

2
+

θ2
n−i+1

2
.

Therefore, all players i > 1 derive a utility more than 1/2. This, however, is
at the expense of the first player. When player 1 plays for the first time, there
is no available gift. Therefore, by Theorem 1, the expected utility of player 1
is precisely θn, which by Theorem 2 is 2

n
(1 + o(1)). This is summarized in the

following theorem.

Theorem 3. The expected utility of player i for i > 1 in the gift exchange

game is 1
2 +

θ2
n−i+1

2 . For player 1, the expected utility of playing the game is

θn = 2
n
(1 + o(1)).



3.1 A Fairer Game

The first player in the ordering might never get to steal a gift in the game G,
and as we saw above, receives very low utility relative to all other players: in this
sense, the game G is not very fair. To be more fair to the first player, a version
of the game is sometimes played where the first player gets a turn at the end to
steal a gift. We next analyze this version of the game, and show that it is indeed
more fair for the first player — every player has equal expected utility in the
equilibrium of this game.

We define the game G′ to be the following modification of G: if the first
player never gets a chance to steal a gift through the course of the play, she gets
a turn at the end after all gifts have been opened, and can steal from amongst
the available gifts if she wishes. (Note that if player 1 has never stolen a gift, the
gift she holds is always available; if she chooses to keep her own gift at the end
of the game, we will call this equivalent to stealing her own available gift.) We
show the following about G′.

Theorem 4. In the subgame perfect equilibrium of G′, every player has expected

utility 1/2.

Proof. We claim that the following is a subgame perfect equilibrium of the mod-
ified game G′. Each player i other than player 1 uses the following strategy. If
player 1 has already stolen a gift, then play according to the optimal strategy
for G; if player 1 has not yet stolen a gift, steal the maximum value available
gift. For player 1, if her gift is stolen when there are 2 or more unopened items,
she steals the highest value available gift if its value v is greater than 1/2, else
opens a new gift. If there is only one unopened gift when her gift is stolen, she
opens the new gift, and if she gets a turn when there are no unopened gifts, she
steals the highest value available gift (including her own).

We prove this claim by backward induction. First, note that if player 1 does
play after all gifts have been opened, she must steal the highest value gift from
amongst the available gifts (including her own). If there is exactly one unopened
gift when her gift is stolen, there is no player who can steal the new gift she
opens from her: if the best available gift has value v1, she can get a value of
v1 by stealing, or max{v1, x} ≥ v1 if she opens a new gift (since v1 will still be
available). So she must open the new gift. Also, once player 1 steals a gift, it
is optimal for every player to play according to the strategy described for G in
Theorem 1. Consider a player j 6= 1 when there is just one remaining unopened
gift, when 1 has not stolen a gift yet. She can either open a new gift with value
x, or steal the best available gift of value v1. If she steals, this gift cannot be
stolen from her, so her final value is v1. If she opens a new gift with value x > v1,
this gift becomes the highest value available gift, and will be stolen by player 1
in the next round, leaving her to steal the gift of value v1. If x < v1, she either
retains this gift or gets the next available gift with value less than x, depending
on whether x is smaller or larger than g, the value of the gift currently held by
player 1. In either case, if she opens a new gift, the final value she receives is
no larger than v1, so her best response is to steal the gift with value v1. (The



argument for player 1 is the same for all rounds in the game, and we do not
repeat it for this case with only one unopened gift).

Now assume that it is some player j 6= 1’s turn to play when there is more
than one unopened gift, and the induction hypothesis holds for the remainder
of the game. Again, consider the case where 1 has not yet stolen a gift, so that
her gift is still available. Suppose the values of the available gifts are v1 ≥ v2 . . .
and so on. If j steals, she gets a final value of v1. If she opens a new gift of
value x, this gift becomes available and can be stolen in the remainder of the
game. If x > v1, by the induction hypothesis x is immediately stolen by the next
player and j steals v1, for a final value of v1. If x ≤ v1, there is a sequence of
stealing v1, v2, . . .; either j’s gift of value x is never stolen in the remainder of
the game, in which case her final value is x ≤ v1, or it is stolen. Irrespective
of when it is stolen— either when player 1 has not yet stolen a gift, or after
1 steals a gift— j’s final value is no larger than x: suppose x is stolen when 1
has not yet stolen a gift; by the induction hypothesis, j must steal the highest
value available gift, which has value v(x) ≤ x. (Since x was stolen, it was the
highest value available gift at that point. Also note that such a gift definitely
exists since 1’s gift is available.) If j’s gift is stolen after player 1 steals a gift
and there are i′ unopened gifts at this time, we must have x ≥ θi′ since x was
stolen, because all players are playing according to the optimal strategy in G. By
Theorem 1, j’s expected utility from playing her optimal strategy at this point
is max(v(x), θi′) ≤ x ≤ v1. Therefore, player j can never get expected utility
better than v1, so she should steal the highest value available gift.

For player 1, when there are 2 or more unopened gifts, she can either steal
the highest value available gift to obtain utility v1, or open a new gift of value
x. If she does not steal a gift now and never steals a gift in later rounds, by the
induction hypothesis, every remaining gift including the last one is opened by
1 (since other players will steal the highest value available gift and 1’s gift is
always available). Also, by the induction hypothesis, if she steals a gift after this
it has value greater than 1/2. In either case, she can ensure a expected utility of
at least 1/2, so she should not steal if v1 ≤ 1/2. If v1 > 1/2, then by opening the
new gift of value x, the maximum value she can hope to get is max(v(x), 1/2),
where v(x) is the value of the best available gift after x. Since v(x) ≤ v1, her
optimal strategy is to steal v1 if v1 > 1/2.

With these strategies, the optimal play of the game proceeds as follows: in
the first step, player 1 opens a gift, which is stolen immediately by player 2;
since the available set is empty, 1 opens a new gift, which is stolen immediately
by 3, and so on; finally, the n− 1th opened gift is stolen from 1 by player n. At
this point, there are no available gifts, so 1 opens and keeps the last unopened
gift; each gift, and therefore every player has expected value 1/2.
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