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Abstract

Motivated by the problem of learning the qualities of user-generated content on the Web, we study
a multi-armed bandit problem where the number and success probabilities of the arms of the bandit are
endogenously determined by strategic agents in response to the incentives provided by the learning algorithm.
We model the contributors of user-generated content as attention-motivated agents who derive benefit when
their contribution is displayed, and have a cost to quality, where a contribution’s quality is the probability
of its receiving a positive viewer vote. Agents strategically choose whether and what quality contribution to
produce in response to the algorithm that decides how to display contributions. The algorithm, which would
like to eventually only display the highest quality contributions, can only learn a contribution’s quality from
the viewer votes the contribution receives when displayed. The problem of inferring the relative qualities of
contributions using viewer feedback, to optimize for overall viewer satisfaction over time, can then be modeled
as the classic multi-armed bandit problem, except that the arms available to the bandit and therefore the
achievable regret are endogenously determined by strategic agents — a good algorithm for this setting must
not only quickly identify the best contributions, but also incentivize high-quality contributions to choose
amongst in the first place.

We first analyze the well-known UCB algorithm Muycp [Auer et al. 2002] as a mechanism in this setting,
where the total number of potential contributors or arms, K, can grow with the total number of viewers
or available periods, T, and the maximum possible success probability of an arm, v, may be bounded away
from 1 to to model malicious or error-prone viewers in the audience. We first show that while Mycg can
incentivize high-quality arms and achieve strong sublinear equilibrium regret when K (T') does not grow too
quickly with T, it incentivizes very low quality contributions when K (T') scales proportionally with T. We
then show that modifying the UCB mechanism to explore a randomly chosen restricted subset of /T arms
provides excellent incentive properties — this modified mechanism achieves strong sublinear regret, which
is the regret measured against the maximum achievable quality -, in every equilibrium, for all ranges of
K(T) < T, for all possible values of the audience parameter ~.
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1 Introduction

User-generated content, such as reviews on sites like Yelp and Amazon, answers on online Q&A forums like Y!
Answers, Quora or StackOverflow, comments on news stories or blogs, and user-created videos on YouTube
or articles, for example, on Associated Content, are now ubiquitous on the web. This user-generated content
(UGC) spans a vast spectrum of qualities — a small number of comments on an article (e.g., on Slashdot) or
answers to a question might be very thoughtful and well-written, while others range all the way from mediocre
to junk. A website that hosts such user-generated content would like to sort through these contributions
and selectively present only the best few contributions to each viewer to optimize her experience. However,
websites typically cannot directly observe the qualities of contributions, but rather must learn their qualities
from feedback from these same viewers — in most UGC settings, a viewer can provide feedback about the
contributions they see, for example, by using thumbs-up style buttons. How should a website decide which
contributions to display to each viewer so as to quickly learn the contributions’ qualities, while still ensuring
the best possible viewer experience overall?

The simplest abstraction of the problem of inferring the relative qualities of contributions, each of which
can be thought of as a biased coin whose success probability is this unknown quality, while maximizing the
number of successes obtained over time, is the classic multi-armed bandit problem [1]. However, unlike in
the standard multi-armed bandit setting, the set of contributions, or arms available to the bandit, is not a
fixed, exogenous quantity — rather, the contributions are produced by users who have a choice about whether
to produce a contribution (for example, whether to write an article or review, or to answer a question), as
well as about its quality, i.e., how much effort to put into the contribution. Since these users would all like
their contributions to be seen by a large number of viewers!, how contributions are explored and displayed
now constitutes a mechanism for allocating attention, which might affect the incentives of contributors to
participate, as well as the quality of their contributions.

We therefore have a multi-armed bandit problem where the number and success probabilities of arms of
the bandit are now endogenously determined in response to the incentives provided by the learning algorithm
to agents. A good mechanism in this setting not only needs to quickly identify and exploit the best arms, but
also must incentivize high quality arms, or contributions, in the first place. What algorithms provide strong
incentives to users to participate and make high-quality contributions, and then also quickly identify the best
content?

Our contributions. We model and analyze the problem of learning the qualities of user-generated content,
when this content is produced by strategic, attention-motivated agents with a cost to quality. Our model leads
to a new version of the multi-armed bandit problem with endogenous arms, where the number and success
probabilities of the arms presented to the bandit are not fixed apriori, but rather are determined by the
incentives provided by the explore-exploit algorithm.

We begin by analyzing the well-known UCB algorithm [1] Mycp for the multi-armed bandit problem as
a mechanism, in a setting where the maximum success probability of arm, v, may be bounded away from 1
— this models an important factor in the context of user-generated content, namely the presence of voters in
the online audience who (either deliberately or accidentally) vote down even the best contributions. We find
that while the UCB mechanism is able to incentivize high-quality arms and achieve strong sublinear regret
(Definition 2.2) when the number of potential contributors K (7") does not grow too quickly with the number
of viewers T, it fails miserably when K (T') scales up with 7', which is a natural regime of interest in the UGC
setting where often many viewers are also potential contributors — when limp_, % = r, all contributors
produce very low quality content under Mycg, leading to poor regret.

We then investigate a modification of the UCB mechanism, motivated by another bandit algorithm
Mi_pamL [6] that is designed to achieve good performance (algorithmically) in the large K regime. This
mechanism M _parr, itself does not suffice, since while it produces strong sublinear regret for v = 1, it is not
robust to any down-voting errors by the audience, and fails to achieve strong sublinear regret for any v < 1,

'In addition to attention (i.e., number of views) being a direct psychological incentive, there are settings, such as Associated
Content, where the author of an article is paid according to the number of views her article receives, so that attention might also
translate to a direct monetary incentive.



when K (T') grows proportionately with 7. However, modifying the UCB mechanism to explore a randomly
chosen restricted subset of VT arms as in M1 _ga1, but using the UCB index, provides excellent incentive
and robustness properties — this modified mechanism achieves strong sublinear regret, which is the regret
measured against the mazimum achievable quality v, in every equilibrium, for all ranges of K(T') < T, for all
possible values of the audience parameter .

Related work. There is now an enormous literature on algorithms for learning in the multi-armed bandit
setting which is too large to describe properly in this paper; see, for example, [18] and references therein for
a nice overview. A large part of this literature addresses settings with a fixed and finite set of arms. In the
context of user-generated content with unknown quality, however, the number of contributions, or arms, is
potentially related to the number of viewers, or periods available for exploration, since a page with a larger
number of viewers potentially also has a larger number of contributors. Our setting is therefore most closely
related to the models that do not assume there is a fixed finite number of arms, as in [6], [20], and [21].
All of these papers take a purely algorithmic approach to the learning problem, and so do not address a
situation where the number and success probabilities of the arms are endogenously determined in response to
the incentives created by the learning algorithm.

There is a small but growing literature that addresses incentives in the multi-armed bandit setting. [2],
(3], [9], [10], and [13] study multi-armed bandit problems in the context of online advertising with strategic
advertisers, and investigate the design of truthful mechanisms when the system must learn the (unknown)
click-through rates of ads. The strategic choice of the agents in these papers are the agents’ bids, rather
than the click-through rates of the arms that are learned by the mechanism. [5] considers questions related to
endogenous pricing decisions of firms when these decisions may influence whether consumers explore other firms
and the consumers face a multi-armed bandit problem. [7] addresses incentives to explore in a multi-armed
bandit problem when agents will learn from other agents’ explorations and agents potentially have an incentive
to free ride. [14] considers questions related to how agents would choose to explore when an agent’s payoff
depends in part on how many other agents chose to explore the same arm. Lastly, [19] and [22] consider models
of worker job search and job quitting decisions in the context of a multi-armed bandit problem. However, none
of these papers studies a multi-armed bandit setting in which the success probabilities of the arms themselves
are endogenously chosen by strategic agents.

There is a growing body of work on incentives and strategic behavior in the context of online user-generated
content [8, 11, 12, 15, 16]. [8] considers incentives for users to contribute content soon rather than delaying
their contributions in the context of online Q& A sites; however, this work does not address questions related to
the qualities of the contributions. [11] and [12] address the question of incentivizing high-quality user-generated
content in a model very similar to that used in this paper. However, this work does not consider the incentives
provided to agents in the process of learning or estimating the qualities of their contributions, nor does it
attempt to use as small a number of viewers as possible to estimate the qualities of contributions before the
best contribution is identified. This aspect of maximizing viewer welfare is captured by the regret measure
which is used to quantify the performance of the mechanisms we study in this paper.

2 Model and Preliminaries

In this section, we present a model for the problem of learning the unknown qualities of user-generated
contributions to achieve the best overall viewer experience, when contributors are strategic, and viewers
provide feedback on the quality of the contributions that are displayed to them. The outline of the model
is as follows: (i) Contributors decide on whether, and with how much effort, to write a contribution, based
on how often their contribution is likely to be displayed by the algorithm (ii) Viewers vote on contributions,
and the learning mechanism would like to use these votes to find the best, or top few, contributions and
eventually display only these top contributions to viewers (iii) The mechanism’s performance is measured by
its equilibrium regret, which measures the regret based on the elicited qualities of contributions displayed
in equilibrium against the best possible quality a contributor could have chosen. The model is described in
detail below. (We note that this model does not attempt to capture every nuance of the UGC setting, and



hope that it will provide a building block to address other aspects of the problem of learning qualities in the
UGC setting, such as sequential contributions, or the fact that a viewer may not always provide feedback on
the contribution she sees; see §5 for a discussion.)

Content. We define the quality g of a contribution as the probability that a viewer will like the contribution,
i.e., rate it positively as ‘good’ or ‘useful’ or give it a thumbs-up; such ratings and thumbs-up buttons are
widely used for feedback with online user-generated content. Since ¢ is a probability, it must lie between 0
and 1. The qualities g; of contributions are not directly observable (i.e., are initially unknown) to the system,
which can only infer these qualities from the viewer ratings.

There is a stream of T users, each of whom views contributions. For clarity of exposition, we begin by
assuming that each user will be shown exactly one contribution (we later show how to extend all our results
to displaying multiple contributions in §4.2). Each user provides feedback on the quality of the contribution
he sees by giving it either a positive or negative vote.

We would like to model the fact that an audience of viewers need not be perfect: for example, it is possible
that there are viewers who will always vote a contribution as bad no matter how good the contribution is, or
that viewers make errors when rating contributions. A simple way to model such imperfect viewer populations
is via an upper bound y on the probability of receiving a positive vote from a random member of the audience.
That is, we constrain the qualities of contributions as

q € 10,9,

where v < 1 is the probability that a contribution of the highest possible quality receives a positive vote.
When v = 1, no segment of the viewer population makes errors or maliciously rates contributions negatively,
so that a contribution of the highest possible quality always receives a positive vote from every viewer. A good
mechanism should provide incentives that are robust to such realistic imperfections in the voting population,
i.e., that do not fail for audiences with v < 1.2

Contributors. There is a pool of potential contributors, or agents, of size K = K(T'). The dependence of
K on T reflects the fact that as the number of viewers for a site grows, the number of potential contributors
can grow as well.

Each of the K(T') potential contributors is a strategic agent who chooses whether to participate and the
quality of her contribution (if participating) to maximize her expected payoff given the potential costs and
benefits from contributing. We denote the probability that agent ¢ decides to contribute by 3; and the quality
she chooses when contributing by ¢;. Since agents may decide whether or not to participate probabilistically, the
number of actual contributors, which we denote by k(T'), is a random variable whose distribution depends on
the total number of potential contributors K as well as their participation probabilities (1, ..., 8x. Naturally,
E(T) < K(T).

If an agent chooses not to contribute, then she incurs no cost but also receives no benefit, so her net payoff
is 0. An agent who contributes has a cost to quality which depends on her type, and derives benefit from
attention, as described next.

The cost incurred by a contributor depends on the quality of the content she chooses to produce. To
model the fact that different agents might have different abilities, i.e., need to exert different levels of effort to
produce the same quality contribution, we suppose that each agent can be one of several possible types 7 in
some finite set 7, each of which corresponds to a different cost function. An agent’s type 7 is an independent
and identically distributed draw from a distribution p over 7 such that the probability an agent is type 7 is
Pr-

The cost of producing content of quality ¢ for an agent of type 7 is ¢;(gq), which is an increasing function of
q (i.e., producing higher quality content is more costly). We make the following assumptions on the functions
Cr

2One could further generalize the model by assuming that there may be some viewers who make errors by rating contributions
positively, so the lowest possible quality contribution is greater than 0. However, all our results continue to hold with this change
to the model, since the analysis never uses the fact that the lowest possible quality contribution is 0.



1. The cost function ¢; is continuously differentiable in ¢ for all ¢ < 7 and all 7.
2. ¢-(0) > 0.
3. limg_.~ ¢, (q) = oo for all 7.

The assumption that ¢.(0) > 0 captures the fact that entry is endogenous, i.e., participating and producing
the contribution of even the lowest possible quality requires more effort than not participating at all. The
assumption that limg,_., c-(¢) = oo, as in [11] and [12], says that producing content of the highest possible
quality, which corresponds to making every viewer that votes accurately happy, is nearly impossible.® (We
note that the assumption that c¢;(¢) — oo is not required for our main result (Theorem 4.3), showing that
the modified UCB mechanism Muycp_mop achieves strong sublinear regret, to hold; rather, the result holds
despite this assumption.)

Agents derive benefit from attention, i.e., when their contribution is displayed to a viewer. The total benefit
to an agent is the total number of viewers who see her contribution. Recall that there are a total of T such
viewers, i.e., T is the total number of times contributions will be displayed. Let ¢ denote a generic time period
between 1 and T. We use n! to denote the number of views contributor i receives until the ¢-th period, so that
nZT is the total number of views, or the total amount of attention received by contribution .

We note here that our results will also hold when agents only derive value from positive feedback to the
contribution, i.e., from qm;fr rather than nZT alone — informally, this is because it is easier to incentivize agents
to produce higher qualities when they value positive feedback than when they only value views.

The payoff of an agent who chooses quality ¢; is the difference between the number of views she obtains,

T

n; (which can depend, in general, on the number and qualities of other contributors in addition to ¢;), and

her cost. Thus an agent’s expected payoff from participating with quality ¢; if the agent’s type is 7 is

u; = E[n] (i, q—i, k(T))] — cr ().

Mechanism. A mechanism in this setting determines which contribution to display for each ¢ < T, and
therefore the values of nf, t=1,...,T, for all contributions 7. The mechanism can choose which contribution
to display based on the values of T', k (the number of contributions received), as well as the estimates of the
qualities of these contributions from the (random) votes received by each contribution, and the number of
times each contribution has been displayed so far (n}). (We note again that the generalization to displaying
multiple contributions, as is typically the case in real UGC applications, is presented in §4.2.)

The mechanism would like to eventually identify the highest quality contribution based on its estimates
of qualities from the viewer votes, and then show this best contribution to every viewer. We next discuss
how we measure performance — unlike in traditional multi-armed bandit settings, the performance of
a mechanism here must be measured not only by how quickly the mechanism identifies and exploits the

best contribution, but also on the qualities of the contributions it is able to elicit in equilibrium in the first place.

Solution Concept. In response to the incentives provided by the mechanism, agents strategically choose
their contribution probabilities 3; and qualities ¢; to maximize their utility. We use the solution concept of
a free-entry Bayes-Nash equilibrium to determine the qualities and number of contributions (i.e., arms), that
will be elicited by the mechanism. Since agents’ payoff functions are symmetric in the parameters of the game
for all agents with the same type 7, we focus throughout on symmetric equilibria: in a symmetric equilibrium,
all agents with the same type participate with the same probability and follow the same strategy of quality
choices conditional on participating.

A symmetric mized strateqy Bayes-Nash equilibrium is a set of probabilities 3, and distributions F; over
qualities ¢, such that if agents’ types are drawn according to the distribution p and all agents of type 7
contribute with probability 3, and choose a quality drawn from the CDF F;(q) conditional on contributing,

3While this model assumes that an agent knows his or her own cost function, since agents do not know the types of the other
agents, agents face uncertainty about the cost functions of the other agents. However, the assumption that an agent knows his
cost for making a contribution of quality ¢ is not important for any of the analysis. If an agent faced uncertainty about how costly
it would be for him to make a contribution of quality g, all the analysis in the paper would go through by simply replacing known
costs with expected costs.



then no agent can increase her expected payoff by deviating from this strategy given the uncertainty the
agent faces about the precise realization of the other agents’ types. That is, no agent can profitably deviate
by changing either her probability of participation or the distribution of qualities with which she is contributing.

Equilibrium Regret. The notion of regret, which is difference between the optimal cumulative reward
(here, maximum possible viewer upvotes from all viewers) and the achieved cumulative reward (actual upvotes
on the displayed contributions), is a natural measure of performance for our setting. We measure the per-
formance of a mechanism that decides how to display contributions via its regret with respect to the highest
possible qualities that could have potentially been chosen by agents:

Definition 2.1 (Strong regret). Consider a mechanism M, and suppose M has a symmetric mized-strategy
equilibrium (Br, Fy). Recall that v < 1 is the highest possible quality that an agent may choose. The strong
regret of the mechanism M in this equilibrium is

T
R(T) =T — E[Y_ g,
t=1

where q; is the quality of the contribution that is displayed in period t, and the expectation is over the randomness
in the mechanism as well as over the random choices of agents choosing qualities from distribution F. in this
mixed-strategy equilibrium.

We will be particularly interested in the performance of the mechanisms we consider in the limit as T' — oo,
as is common in the literature on explore-exploit algorithms which attempt to minimize asymptotic regret (e.g.
[1]) as well as in prior work on incentivizing user-generated content [11, 12]. The diverging attention regime
is arguably the most important for the user-generated content setting: first, these are the situations where
delivering high quality content matters the most from the perspective of viewer welfare. Second, the popular
sites are the ones that draw the most attention-motivated contributors, as well as the ones that tend to attract
contributions of varying quality. Indeed, tremendously large amounts of attention are not uncommon for
popular content on the web; for instance, the most popular YouTube videos have been viewed over a hundred
million times and even days-old trending videos have hundred of thousands of views, numbers that clearly
belongs to the diverging attention regime. Other instances of user-generated content with diverging 7" include
reviews of products, comments on popular articles, or answers on online Q&A sites that are viewed by many
people over a long period of time. The notion of strong sublinear equilibrium regret, defined below, captures
the performance of a mechanism in the diverging 71" regime, in all symmetric equilibria of the mechanism.

Definition 2.2 (Strong sublinear equilibrium regret). A mechanism M has strong sublinear equilibrium regret
if R(T) = o(T), i.e., limp_ % =0, in every symmetric equilibrium of M.

Since the qualities q are endogenously determined, a mechanism must be evaluated not only by whether
it quickly learned which contribution is best, but also the contribution qualities that the mechanism is able
to elicit: for a mechanism to have strong sublinear equilibrium regret, it must both be able to elicit some
contributions with qualities that tend to -y, as well as quickly learn which are these contributions.

2.1 Preliminaries

Here we briefly state the necessary conditions for a set of participation probabilities and quality distributions
(Br, Fr(q)), in which all agents of type 7 contribute with probability 5, € [0,1] and chooses quality drawn
from the distribution F;(q) upon participating, to constitute an equilibrium to a mechanism. These conditions,
summarized below, can be derived using the same analysis as in [11]:

1. If B, = 0, the expected benefit from participating for an agent of type 7 must be no greater than the
expected cost.

2. If B, € (0,1), the expected benefit from participating for an agent of type 7 must equal the expected
cost.



3. If B, = 1, the expected benefit from participating for an agent of type 7 must be no smaller than the
expected cost.

4. For any ¢ in the support of F,, no agent of type 7 can obtain a strictly larger payoff by choosing some
other quality ¢’ € [0,1) instead of ¢ upon participating, given that the remaining agents use the strategy

(B, F-(q))-

The equilibrium conditions essentially say that in addition to receiving nonnegative payoffs (Conditions 1 and
3) that cannot be improved by choosing a different distribution of qualities (Condition 4), it must be the case
that if agents participate probabilistically, then the payoff to participation must be zero, since otherwise agents
could increase their payoff by either always or never participating (Condition 2). This zero-payoff condition is
a common feature in models with free entry.

3 UCB Mechanism

In this section, we investigate the well-known UCB algorithm [1] as a mechanism, in which the number and
success probabilities of the arms presented to the UCB algorithm are endogenously determined by strategic
agents.

Let ¢! denote the number of upvotes (or thumbs-ups) divided by the number of views that contribution ¢
has received at time ¢, i.e., the estimate of the quality of contribution i at time t. The UCB algorithm Mycp

proceeds as follows: it first displays all contributions once, and for each subsequent step t, it computes the

value of the index qf + 21% for each contribution ¢, and displays the contribution for which this index is the

7

largest.

Before analyzing the performance of Mycp, we first need to address the question of the existence of an
equilibrium. The following result assures us that Mycp indeed possesses an equilibrium, allowing us to analyze
the regret of Mycp with the equilibrium set of contributions (i.e., the equilibrium number and qualities of
contributions) as input arms.

Theorem 3.1 (Equilibrium Existence). There exists a symmetric mized strategy equilibrium of Muycp in
which all contributors of type T participate with probability B, and choose a quality drawn from the same
cumulative distribution function Fr(q) conditional on contributing.

All results are proven in the appendix. It is worth noting that the proof of Theorem 3.1 does not depend
in any way on the particulars of the mechanism Mycp. Instead, this proof simply appeals to fixed point
arguments that would apply for virtually any reasonable mechanism. Since equilibrium existence would hold
for virtually any mechanism with a virtually identical proof, we omit formal proofs of equilibrium existence
for all other mechanisms considered in this paper, and simply note here that equilibria can be shown to exist
in these settings with virtually identical arguments.

It is well known that the UCB algorithm achieves sublinear regret in a purely algorithmic sense [1]. We
now proceed to analyze the behavior of Mycp when treated as a mechanism with strategically determined
arms. Recall that we assume throughout that K (7T'), the number of potential contributors or arms, is less than
or equal 7', the number of viewers, or periods, available.

Our first theorem says that when the number of potential contributors K(7T') does not grow too quickly
with 7', there is no equilibrium in which agents choose qualities that remain bounded away from ~. This,
together with Theorem 3.1 on the existence of equilibria, implies that when K(T') grows adequately slowly,
the UCB mechanism provides incentives for agents to participate with near-optimal quality in equilibrium,
i.e., ¢ — 7 in all equilibria. (Note that the number of potential participants K(7') does not need to remain
bounded as T' — oo — K(T') can still diverge with T'.)
Theorem 3.2. Suppose K (T') is such that limp_, o W
of Mucs for sufficiently large T. Furthermore, for any fized ¢* < v, the probability that an agent chooses
quality q < g in equilibrium goes to 0 in the limit as T — oo.

= 00. Then all agents participate in an equilibrium



Since every contributing agent chooses quality ¢ — + in every equilibrium as T' — oo and there are always
contributing agents, it follows immediately that the UCB mechanism achieves strong sublinear regret for such
K(T). We summarize this in the following corollary.

Corollary 3.1. Suppose limp_, W = 00. Then the UCB mechanism Mycp achieves strong sublinear
regret.

However, as our next result shows, the UCB mechanism does not quite ‘work’ when the population of
contributors scales proportionately with the number of viewers. In fact, not only does Mycg fail to identify
and exploit the best arm adequately quickly, it also manages to incentivize very low quality contributions —
every agent who contributes chooses low quality contributions in every equilibrium of the mechanism.

We note that both regimes for the relative sizes of K(7') and T are of interest in the context of user-
generated content. In online Q&A sites such as Yahoo! Answers or StackOverflow, the number of users K (7T)
who can answer a question is often significantly smaller than the number of users who consume the answer,
possibly via a search engine. On the other hand, in settings like posts on discussion forums or comments on
blogs where many consumers are also producers, the number of contributors may not be negligible compared
to the number of viewers who consume the content, so that K (7')/T is not vanishingly small.

Theorem 3.3. Suppose that limp_, o % =r < 00. Then for sufficiently large T', any equilibrium has the
property that no agent of type T makes a contribution with quality greater than q = c; (1 + ¢(0)).

The proof (provided in the appendix) consists of two parts. (i) We first demonstrate that the incentives

for participation provided to the agents are such that limsupp_, % < 00. (ii) We then show that if

lim supp_, o % < 00, the UCB algorithm is unable to identify and exploit the best arm, and gives all arms

essentially the same amounts of attention, thereby providing incentives for poor quality. Note that here, the
UCB mechanism fails in a purely algorithmic sense in addition to providing poor incentives — it fails to quickly
identify and exploit the best contribution due to the large number of arms. We next address the question of
designing a mechanism with good equilibrium regret.

4 Improving Equilibrium Regret

In this section, we address the problem of achieving strong sublinear regret for all K(T"). To do this, we borrow
an idea from an explore-exploit algorithm M;j_payr, [6, 18] that is designed specifically to achieve good regret
for the infinite arms regime (in a purely algorithmic sense), and use it to develop a modification of the UCB
mechanism which achieves strong sublinear equilibrium regret for all regimes of K(7T').

Before describing the modified UCB mechanism, we briefly describe the mechanism M;_pa1r, which mo-
tivates this modification. M;_par, proceeds by first randomly selecting min{|v/T|, k(T)} of the available
contributions or arms and exploring each of these arms in turn, switching to a new arm as soon as the current
arm receives a negative vote, unless this current arm has already received |v/T| or more positive votes. This
continues until either all arms have received a negative vote, in which case the arm that received the largest
number of positive votes is displayed for all remaining periods, or some arm receives L\/TJ consecutive positive
votes, in which case this arm is displayed for all remaining periods.

This algorithm M _garr, itself does not, in fact, suffice for our setting with strategic contributors despite its
excellent performance when arms are exogenously determined. While M1_gayr, does achieve strong sublinear
equilibrium regret when the audience parameter v = 1 (i.e., the maximum possible quality is ¢ = v = 1),
this performance is not robust to any down-voting errors by the audience — M _pa7y, fails to achieve strong
sublinear equilibrium regret for any v < 1 when K(T') grows proportionally with 7. We summarize the
equilibrium regret behavior of the mechanism M_gayr, in the theorem below.

Theorem 4.1. When v = 1, Mi_paL achieves strong sublinear regret if there is some type T for which
cr(q) = o(NT) when q = 1 — @(ﬁ) However, for any v < 1, there exists some q* < 7 such that the
probability agents choose quality q > ¢* in equilibrium goes to zero in the limit as T goes to infinity when
lHmy_ o %T) =r < o0.



Thus M1 _pa1, is extremely sensitive to the value of v — agents do not produce qualities tending to ~y
in any equilibrium when limp_, KLT) = 7 and v < 1, so that M;_pa, cannot achieve strong sublinear
regret in any equilibrium for any v strictly less than 1. Thus, while providing an improvement over the UCB
mechanism, Mj_gar, does not perform well under all conditions when the arms are endogenously created by
strategic agents responding to incentives of the mechanism. We now proceed with defining and analyzing the
modified UCB mechanism.

4.1 The MUCB,MQD Mechanism

We now analyze a modification of UCB which borrows the idea of exploring a restricted set of arms from
M1 _wa1,. The modified UCB mechanism Muycp_mop explores contributions using exactly the same index
as the UCB mechanism, but differs from the UCB mechanism in that it explores from a smaller, randomly
selected subset of arms when K (T') is too large. This modified UCB mechanism Mycp-mop turns out to
have extremely desirable incentive and learning properties: Mycs_mop achieves strong sublinear equilibrium
regret for all values of K(7T') and the robustness parameter -y, with no restrictions on the cost functions c;.

Definition 4.1 (Muycs_mop). The modified UCB mechanism Muycs—mop first randomly selects a subset
of size min{k(T"),G(T)} of the available contributions, where G(T) is some integer-valued function. The
mechanism then explores these selected contributions using Mycp.

As we will see, when G(T) is chosen so that limy .o G(T) = oo and G(T) = o(:Z5), there is a balance
between exploring enough contributions and not exploring too many contributions which provides the right
incentives for achieving good equilibrium regret. We begin the equilibrium regret analysis with an easy
algorithmic lemma, which says that every contribution that is explored by Muycp_mop except for the one
with the highest quality receives precisely ©(InT") views.

Lemma 4.1. Consider the modified UCB algorithm Muycg—mop with G(T) — oo and G(T) = o(15), and
any 6 > 0. Then, any contribution with quality satisfying ¢; < Gmaz(T) — § receives O(InT) attention in

expectation, where ¢max(T) is the quality of the highest-quality explored contribution.

This result implies that an infinite number of agents (or all agents if K (7') is bounded) will participate as
T — oo under Mycp_moD, because if there are fewer than G(7T') participants, then an agent would strictly
prefer contributing with any quality (and obtaining Q(InT') attention) to not contributing.

The next theorem, which is the main component of the proof that Mycg_mop achieves strong sublinear
equilibrium regret, says that the highest quality of an explored contribution in any equilibrium tends to v as
T — oo with high probability, for appropriately chosen G(T').

Theorem 4.2. Suppose G(T) is chosen so that G(T) — oo and G(T) = o(Zg). For any fived q* < v, the
probability that there is some agent explored by Mycs—mop who chooses quality ¢ > q* goes to 1 as T — o0
in every equilibrium of MucB—_MOD-

This result allows us to prove that the modified UCB mechanism Mycp_mop achieves strong sublinear
equilibrium regret when G(7T') is as in Theorem 4.2:

Theorem 4.3. Suppose G(T) — oo and G(T) = o(y5). Then the modified UCB mechanism Mucs-mon

achieves strong sublinear equilibrium regret for all values of v and all K(T) <T.

Note that the strong sublinear equilibrium regret property assures us that the regret of Mycg_mop with
respect to the maximum achievable quality «y is sublinear in every equilibrium of Muycp_mop, not just that
there exists an equilibrium of Mycp_mop with this property.

The choice of G(T'), the maximum number of contributions explored by the modified UCB mechanism
Mucs_MmoD, can potentially have a significant effect on the incentives provided for both participation and
quality. If G(T) is large and the mechanism explores a larger number of contributions, then the expected
benefit to having the highest quality contribution is correspondingly lower since Mycp—mop spends O(InT)
time exploring each lower quality contribution. This leaves behind less attention for the highest quality



contribution, so agents will have a relatively lower incentive to choose higher qualities. In addition, since
agents produce lower quality content when the mechanism explores more contributions, it is relatively less
costly to participate and play equilibrium strategies when the mechanism explores more contributions, so
agents are more likely to participate when the mechanism explores more contributions. Thus a larger value
of G(T') provides incentives for larger participation but lower quality contributions, and vice versa, so varying
G(T) could enable one to achieve various points on the trade-off curve between participation and quality. We
leave the problem of precisely quantifying this tradeoff as an open direction for future work.

4.2 Displaying Multiple Contributions

We have shown so far that the modified UCB mechanism Muycg_mop achieves strong sublinear equilibrium
regret when each viewer sees a single contribution. We now show that this result also extends to the more
realistic setting where each viewer is shown multiple contributions, as is typically the case with user-generated
content.

Suppose that when shown multiple contributions, a viewer views the first contribution with probability
p1, the second with probability ps, and so on, where p; > ps > ... reflects the fact that viewers typically
read contributions from the top to the bottom of a webpage so that a contribution displayed near the top of
a webpage is more likely to be viewed than a contribution lower down on the page. (This model of viewing
behavior by users is widely used in the online advertising literature as well, where ads are modeled as having a
position-dependent clickability that decreases with their position down the page.) As before, we assume that
a viewer rates every contribution she views.

We extend the mechanism Mycg_mop in the obvious way to displaying multiple contributions. Let m > 1

be the number of contributions to be displayed to each viewer. At every time period ¢, Mycs_mop displays
2InT

nt

the m contributions with the largest values of ¢! + , displaying the contribution with the largest index

most prominently (i.e., in the top position), the contribultion with the second-largest index next (in the second
position), and so on.

We extend the notion of strong regret to mechanisms that display multiple contributions, also in the obvious
way, as follows:

Definition 4.1. The strong regret of a mechanism M which displays m contributions at each time t, in an
equilibrium (8-, Fr), is defined as
m m
R(T) =Y paT — EDD D pigal,
j=1 j

t=1 j=1

where q; ¢ s the quality of the contribution that is displayed in the Gt most prominent position in period t,
and v < 1 is the highest possible quality that a contribution may have. A mechanism M has strong sublinear
equilibrium regret if R(T) = o(T), (i.e., limp_ @ = 0) in every symmetric equilibrium of M.

This definition of strong regret differs from the original definition only in that it takes into account the
qualities of all the displayed contributions and weighs them by the frequency with which they are viewed.
Strong regret again compares the qualities of the displayed contributions relative to the optimal solution where
every displayed contribution at every time t has the maximum possible quality . As before, the expectation
is over the randomness in the mechanism as well as over the random choices of agents choosing qualities from
the distribution F; in this mixed-strategy equilibrium.

We now show that the results of Section 4.1 extend to this setting where the site owner displays m > 1
contributions at the same time to a viewer. First we note a lemma analogous to that in §4.1 which shows that
all contributions except the best m contributions receive exactly O(In7T") attention.

Lemma 4.2. Consider the modified UCB algorithm Muycs—mop with G(T) — oo and G(T') = o(7=7), and any
d > 0. Then any contribution with quality satisfying q; < qm(T) — § receives O(InT) attention in expectation,

where g (T) is the quality of the mth—best explored contribution.
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As in §4.1, to prove that Muycp_mop achieves strong sublinear equillibrium regret, we must first show that
enough agents will make high quality contributions in equilibrium. We use Lemma 4.2 above to show that
there will almost certainly be at least m explored agents who choose arbitrarily high qualities in equilibrium:

Theorem 4.4. Suppose G(T) — oo and G(T') = 0(%). For any fized ¢* < ~, the probability that there are at
least m agents who are explored by Mycs—mop and that choose quality g > q* goes to 1 as T — oo in every
equilibrium of MucB_MoOD-

As before, Theorem 4.4 allows us to prove that the modified UCB mechanism also achieves strong sublinear
equilibrium regret when displaying multiple contributions:

Theorem 4.5. Suppose G(T) — oo and G(T) = o(:=5). Then the modified UCB mechanism Mucs-mon
achieves strong sublinear equilibrium regret for all values of v and all K(T) <T.

5 Discussion

In this paper, we modeled and investigated the problem of learning the qualities of user-generated content,
which leads to a multi-armed bandit problem where the arms of the bandit are endogenously determined by
the response of strategic agents to the incentives provided by the learning mechanism. There are a number of
interesting directions for further work, consisting of both theoretical questions and mechanism design questions
arising from more nuanced models; we discuss these below.

Our results show that a modification of the well-known UCB mechanism can achieve strong sublinear regret
in all equilibria. What other learning algorithms can achieve this regret? We also note that we do not explicitly
derive a quality-participation tradeoff as a function of G(7') — this tradeoff can be particularly relevant in
settings when m, the number of contributions to be displayed, is not fixed apriori but rather determined by
a threshold on quality. An interesting family of open question is what classes of learning mechanisms provide
strong incentives for eliciting arms with high success probabilities, and what mechanisms are optimal in terms
of the quality-participation tradeoff.

Sequential Contributions. In our model, all agents simultaneously decide whether to contribute and the
quality of their contribution if contributing in a Bayes-Nash equilibrium. This is a reasonable assumption,
for instance, when it is too costly for an agent to look at all previous contributions and strategize about her
own contribution based on this information (as in the case of, for example, popular news articles or blog
posts which attract huge numbers of comments), or in settings like some Q&A forums where a number of
answerers might be simultaneously working on the solution to a particular question (e.g., in coding questions
on StackOverflow). However, there are many other settings that are better suited to an alternative sequential
model, in which different potential contributors arrive at different times and make decisions about their own
contributions after viewing the existing set of contributions. The question of equilibrium contribution qualities
in such a sequential model is an interesting, albeit possibly more challenging, direction for future work.

Enhancing the viewer model. Our model for multiple contributions assumes that the probability of viewing
of contribution is independent of the qualities of the contributions displayed before it. However, in some settings
a user may be more likely to want to continue to view contributions if they liked the first few contributions,
whereas in other settings a user may be more likely to view additional contributions if their needs were not met
by the previous contributions. Capturing these viewer behaviors in a model with multiple contributions and
analyzing mechanisms to efficiently learn the qualities of contributions in these settings is another intriguing
direction for further work.
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APPENDIX

A Proofs of Results in Main Text

Proof of Theorem 3.1: First note that no player in this game would ever choose a quality ¢ > max,{c;*(T)},
as a player could always obtain a strictly greater expected payoff by not participating. Thus any mixed strategy
equilibrium to the game in which players are restricted to choosing ¢ € [0, max,{c;(T)}] is also a mixed
strategy equilibrium of the original game.

Now note that this modified game in which players are restricted to choosing ¢ € [0, max,{c;}(T)}] is a
symmetric game in which each player has a pure strategy space that is compact and Hausdorff. Also note that
each player’s expected payoff in this modified game is continuous in the actions of the players. It thus follows
from Theorem 1 of [4] that there exists a symmetric mixed strategy equilibrium of this modified game. This
in turn implies that there is a symmetric mixed strategy equilibrium of the original game. [

Proof of Theorem 3.2: Suppose by means of contradiction that there exists some fixed ¢* < + and some
fixed probability m > 0 such that there are infinitely many values of T for which there is an equilibrium in
which agents who participate choose quality ¢ < ¢* with probability greater than or equal to w. Throughout
the remainder of the proof, restrict attention to such values of T" for which the probability (unconditional on
the realizations of the agent’s types 7) an agent who contributes chooses quality ¢ < ¢* is greater than or
equal to m. To establish a contradiction, we will show that for sufficiently large T, an agent can obtain a
strictly greater expected utility by making a contribution of quality ¢* + € for some small € € (0,7 — ¢*) than
by making a contribution of quality ¢ < ¢*, i.e., there exists a profitable deviation.

We first show that any contributing agent obtains Q(InT") attention. Since % = w(InT), the contribution

that receives the most attention receives w(InT') attention. Thus the value of ¢! + /QIH%T for the contribution

k3

i that is explored the most tends to ¢; as t — T and T" — oo. Now if a contribution j is explored o(InT")

times, then the value of q§- + QLHT tends to oo as T' — oo. This implies that if a contribution j is explored

o(InT') times, then for sufficiently large ¢, q§ + /Q%T > g+ 2InT This contradicts the possibility that i is
J z

explored w(InT') times while 7 is only explored o(InT') times, so it must be the case that each contribution j
is explored (InT") times, regardless of the qualities of the contributions.

Next we show that if an agent j contributes with quality ¢; = ¢" + € for some small € € (0,7 — ¢¥)
and some other agent i contributes with quality ¢; < ¢*, then there must exist some § > 0 such that the

probability that > 14 6 goes to 1 in the limit as ¢ goes to infinity. Suppose not, so that lim; —{ <1

Then limy_ hmtﬁT z%T — %%T > 0 for large ¢ and ¢} + ZlnT < q] + /2T for large t. But since
J 3 ]

q + 21nT < q] + IT?T for sufficiently large ¢, there exists some threshold t* such that 7 is not explored for
J
any t > t* which contradicts the pOSSlblhty that ¢ is explored infinitely often. Therefore, there exists some

0 > 0 such that the probability that 2 > 14 6 goes to 1 in the limit as ¢ goes to infinity.

But this implies that if an agent dev1ates and contributes with quality ¢* 4 € for some small € € (0, — ¢*),
then the agent can obtain Q(In7") more attention in expectation than when she contributes with quality
no greater than ¢*. Since ¢* is bounded away from +, the cost of this deviation, which is no greater than
c(q* + ¢€), remains bounded as T' — oo although the benefit from this deviation grows with Q(InT") as T' — oo.
Thus for sufficiently large T, an agent can profitably deviate by contributing with quality ¢* + € for some
small € € (0,7 — ¢*) instead of using a quality no greater than ¢*. This contradicts our assumption that the
postulated sequence of equilibria exists and shows that for any fixed ¢* < «, the probability the agents choose
quality ¢ < ¢* in equilibrium must go to zero in the limit as T goes to infinity.

To complete the proof, we must show that all agents participate in equilibrium for sufficiently large T. To
see that this holds, recall that regardless of the qualities of the contributions, an agent’s expected benefit from
participating is Q(In7"). But if an agent contributes with quality 0, the agent pays a fixed finite cost that
remains bounded as T" — oo. Thus for sufficiently large T, an agent always obtains a greater expected payoff
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from participating with quality 0 than not participating at all, and full participation must arise in equilibrium.
O

Proof of Theorem 3.3: The proof consists of two parts. (i) We first demonstrate that the incentives for
participation provided to the agents are such that limsupp_, % < 0o as well. (ii) We then show that if

lim supp_, o BT ( < 0 the UCB algorithm is unable to identify and exploit the best arm, and gives all arms
essentially the same amounts of attention, thereby providing incentives for poor quality.

(i) Consider a sequence of equilibria for the various values of 7. Recall that the random variable
k(T) denotes the number of actual contributors of the K (T') potential contributors, so that E[k(T)] =
> B (T)p-K(T). We first show that limsupp_, ., % < oo in this sequence by demonstrating that if
this does not hold, a nonparticipating agent can profitably deviate by participating.

First note that if there is some subsequence of T' such that there is an equilibrium for each T' so that
limp_ s m = oo holds in this subsequence, then any contributing agent must receive a diverging
amount of attention in expectation in these equilibria in the limit as T — oo. To see why, note that the
expected amount of attention received by the agent Who receives the greatest amount of attention, say agent
7, diverges in the limit as 7" — oo since limp_ o E[k(T)] = o0. Thus if there is some contributing agent

21nT 21nT

who receives an amount of attention that remains bounded as T — oo, then qf» + > qj + for
sufficiently large ¢t and T. But this contradicts the possibility that the algorithm explores contrlbutlon J an
infinite number of times in the limit as T" — oco. Thus if limp_, % = oo along this subsequence, then any
contributing agent must receive a diverging amount of attention in expectation in the limit of this sequence of
equilibria.

But if any agent who participates receives a diverging amount of attention in expectation, irrespective of
quality, in the limit of this sequence of equilibria, then an agent can profitably deviate by making a contribution
of quality 0 and obtaining a diverging amount of attention instead of not participating at all for sufficiently
large 7' in this subsequence. This contradiction implies that we must have limsupy_, % < 00 in any
sequence of equilibria.

(ii) Next we show that if the number of arms presented to the UCB mechanism grows too quickly with 7T,
as when lim supp_, % < 00, then for sufficiently large T the algorithm will first explore all contributions
once, then explore each contribution a second time, and so on, until contributions have been displayed 1" times,
regardless of the qualities of the contributions. To see this, note that if the algorithm displays contributions

in this order and some contribution j has been displayed one more time than some other contribution i (i.e..

n’ = nf 4 1), then it is necessarily the case that g + 211# > gt + 2%7“ for sufficiently large T'. This holds
i 3

because the fact that n < W + 1 for large T implies there is some s < oo such that n'? < s for

all t and T, so , /Q%T — /Q%T > 1/2;%? — \/QI%T for sufficiently large T'. But 251%? — 2lnT becomes

2InT 2InT
%>qt-+ Lt

arbitrarily large as T' — oo since s is a constant independent of 7', so ¢! + for sufficiently

2lnT =nl+1,if contrlbutlon J has been

> q] + /28T 1olds for large T' whenever n§
displayed one more time than contrlbutlon] 1, it is necessarily the case that contribution ¢ must be explored at
least once more before j is explored again for large T

Thus no contribution ever obtains more than one extra unit of attention than any other contribution for
sufficiently large T', irrespective of the contributions’ qualities. But in this case, an agent of type 7 would never
choose a quality ¢ such that ¢;(¢) — ¢;(0) > 1. Thus for sufficiently large T', any equilibrium has the property

that no agent of type 7 makes a contribution with quality greater than ¢ = ¢ (1 + ¢(0)). O

large T. But since ¢! +

Proposition A.1. If an agent changes her quality choice from q; to q; + € for some small € > 0, then she
obtains an additional success before her first failure with probability

-
Proof. Let {r,}32; denote an infinite sequence of random variables where each r, is an independent and
identically distributed draw from the uniform distribution on [0, 1]. Note that if an agent makes a contribution
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of quality ¢;, then the probability she obtains a success on the n'* draw is just the probability that r, < g;.
Similarly, the probability of obtaining a success on the n” draw with a contribution of quality ¢; + € is just
the probability that r, < ¢; + €.

Now let m denote the first draw where an agent with a contribution of quality ¢; obtains a failure. Thus
rn < ¢; for allm < m and r,,, > ¢;. If an agent makes a contribution with quality g; 4+ € for some small € > 0, she
also obtains a success for each of the first m — 1 draws (since r,, < ¢; + € for all n < m), and obtains a success
on the m! draw if r,, < ¢; + €. Since r,, > ¢;, this agent obtains an additional success only if r, € (g, ¢i + €.
The probability that 7, € (g;, g; + €] conditional on r,, > ¢; is . Therefore, if an agent changes her quality
choice from qz to g; + € for some small € > 0, then she obtains an addltlonal success before her first failure with

O

Proof of Theorem 4.1: First we illustrate that M_pa1r, achieves strong sublinear regret in the case where
v = 1. To do this, let K(T') = E[k(T)] denote the expected number of agents who participate in equilibrium.
First consider the case where K (T') remains bounded as T — oo. Note that if the 1-fail mechanism fails to
achieve strong sublinear regret, there must be some ¢* <  such that the probability all agents choose quality
q < ¢* remains bounded away from zero in the limit as T' — oo. In this case, if an agent i of type 7 changes
her quality choice from g; to ¢; + € for some small € > 0, then she obtains an additional success before her first
failure with probability ©(e) by Proposition A.1. Furthermore, this change always has a probability bounded
away from zero of affecting whether the agent obtains more successes before her first failure than any other
agent (since there is a positive probability that all agents choose qualities ¢; < ¢* < 1). Now, if this change
does affect whether the agent obtains more successes before her first failure than any other agent, then she
obtains an additional ©(T") units of attention. From this it follows that the expected benefits from making such
a change are ©(eT'), so the derivative of an agent’s benefit with respect to quality at ¢; must be b'(¢;) = O(T).
But the derivative of an agent’s utility with respect to quality must be 0 at every quality in the support of an
equilibrium distribution, i.e., it is necessary that ¢.(¢;) = ©(T) in equilibrium. Since c.(g;) remains bounded
and finite in the limit as T" — oo, this cannot hold for sufficiently large 1. Thus the 1-fail mechanism achieves
strong sublinear regret in this case.

Now consider the case where limy_oo K (T') = oco. Again, suppose by means of contradiction that the
1-fail mechanism fails to achieve strong sublinear regret. This implies that there is some ¢* < 1 and some
7 > 0 such that Pr(ql,, < ¢*) > 7 holds for an infinite number of T, where ¢l denotes the quality that is
chosen by the winning agent, i.e., the agent who first has v/T consecutive successes or has the most successes
before her first failure. Throughout the remainder of the proof, we restrict attention to values of T that satisfy
P?“(qg;m < q*) >

First note that as T — oo, the probability that any agent who contributes with quality ¢ < ¢* has VT
consecutive successes before her first failure goes to zero, so if qgm < ¢*, then with probability arbitrarily close
to 1, qu‘n is the quality chosen by the agent who has the most successes before her first failure.

Now if the mechanism explores min{k(T), |v/T|} agents who all contribute with quality ¢ < ¢*, then the
maximum number of consecutive successes that any such agent has before her first failure is O(InT') with
probability arbitrarily close to 1. To see this, first note that when restricting attention to min{k(7T), |[vT|}
agents who contribute with quality ¢ < ¢*, this maximum number of successes will be largest when there are
|V/T| agents and all of these agents contribute with quality ¢ = ¢*. Also note that if an agent contributes
with quality ¢*, then the probability the agent has less than r consecutive successes before her first failure is
1—(g*)". Therefore, the probability that all |v/T| agents with quality ¢* explored by the mechanism have less
than 7 consecutive successes before their first failure is (1 — (q*)”)L‘/TJ. But for this probability to be bounded
away from both zero and one, we must have r = ©(InT). So if the mechanism explores min{k(T), [vT|}
agents who contribute with quality ¢ < ¢*, then the maximum number of consecutive successes before the first
failure in this group of min{k(T), |v/T|} agents is O(InT) with probability arbitrarily close to 1.

But if an agent contributes with quality ¢ satisfying 1T1q = O(InT), then the expected number of successes
this agent obtains before her first failure is ©(InT"). Therefore, if an agent contributes with quality ¢ satisfying

llfq = O(InT'), then the probability this agent will have more consecutive successes before her first failure than

15



min{k(T), |V/T|} separate agents who contribute with quality ¢ < ¢* remains bounded away from zero in the
limit as T" — oo. Thus if an agent contributes with quality ¢ satisfying 1%(1 = O(InT), then the expected
amount of attention this agent obtains if the agent is explored is ©(T).

But since Pr(gl,, < ¢*) > 7 holds for an infinite number of T', it must be the case that the probability any
given type contributes with quality ¢ > ¢* goes to zero in the limit as T' — oo. Thus if 7 denotes some type
for which ¢;(¢q) = o(v/T) when ¢ = 1 — @(ﬁ), then for sufficiently large T, there is a positive probability that
some agent of type 7 does not contribute with quality ¢ > ¢*. Also, since K (T') — oo, the probability such
an agent obtains more successes before her first failure than any other agent conditional on being explored
goes to zero in the limit as T" — oo. Thus if such an agent instead contributes with a quality ¢ satisfying
11?(1 = O(InT'), then the expected additional amount of attention this agent obtains if she is explored is ©(T).

Now the probability an agent who contributes is explored is Q(%) Combining this with the result in
the previous paragraph shows that if an agent of type 7 contributes with a quality ¢ satisfying 1%(1 =0O(InT)

instead of using a quality ¢ < ¢*, then the agent obtains an expected additional amount of attention Q(v/T).
But since ¢-(q) = o(V/T) when ¢ = 1 — O(+) and 11?(1 = O(InT), it follows that the expected additional
amount of attention an agent obtains from making this change exceeds the expected costs from making this
change for sufficiently large T. Thus some agent would have a profitable deviation, giving a contradiction
which establishes that the 1-fail mechanism achieves strong sublinear regret when v = 1.

Next we show that if v < 1 and limp_ % = r < o0, then there exists some ¢* < 7 such that the
probability agents choose quality ¢ > ¢* in equilibrium goes to zero in the limit as T" goes to infinity. First we
show that E[k(T)] = > 6-(T)p-K(T) — oo in the limit as T — oo by arguing that if only a finite number
of agents participate, then an agent who is not participating could profitably deviate by participating with
quality % Since there are only a finite number of competing agents, if an agent participates with this quality,
the agent will always have a probability bounded away from zero of having more successes before her first
failure than any other agent (even if all the other agents used quality ). Thus it cannot be the case that
E[k(T)] stays bounded away from infinity in the limit as 7' — oo.

Now suppose by means of contradiction that there is no ¢* < = such that the probability agents choose
quality ¢ > ¢* in equilibrium goes to zero as T' goes to infinity. In this case, note that there exists some
sequence {G(T)}5%_, such that limy_ ¢(T) = v and limy_ Pr(gl;, > G(T)) = 1, where ¢, denotes the
quality that is chosen by the agent who first has v/T consecutive successes or has the most successes before
her first failure.

To see why, note that as T — oo, the probability that any agent has v/T consecutive successes before her
first failure goes to zero (since all agents choose some quality ¢ < v < 1), so with probability arbitrarily close to
1, qgm is the quality that is chosen by the agent who has the most successes before her first failure. Let m(T')
denote the number of successes obtained by an agent who has the most successes before her first failure. Since
the mechanism explores an arbitrarily large number of agents as T — oo (it explores min{k(7T), T} agents),
m(T'), the highest number of consecutive successes amongst these explored agents, becomes unbounded with
probability arbitrarily close to 1. But if m(7T) becomes unbounded, it is exponentially more likely that an
agent with some high quality gz will achieve m(T) successes before her first failure than it is that an agent
with some lower quality ¢;, < gm achieves m(T') successes before her first failure. So if there are enough agents
who participate with qualities in [¢(7"),~] (which happens by assumption and since E[k(T")] — o), then the
probability the agent who has the most successes before her first failure has quality in [¢(T), ] goes to 1 as
T — oo. Thus such a sequence {G(7T")}77_, exists.

Now consider the costs and benefits to participating with quality ¢ € [§(T),7]. Recall that the number
of agents who participate with quality ¢ € [¢(T"),~] becomes unbounded with probability arbitrarily close to
1 as T — oo, and let F7.(q) denote the cumulative distribution function corresponding to the mixed strategy
equilibrium quality choices of the agents of type 7 who participate in the mechanism for a given T'. Conditional
on an agent participating with quality ¢ € [¢(T), 7], the probability this agent is explored and obtains the most
successes before her first failure is @<ZT T = F% AN K(T)) since we have seen that the agent with the

A~

most successes before her first failure will almost certainly have quality ¢ € [§(T),~] and (unconditional on
the agents’ precise quality choices and types) all agents who participate with qualities g € [§(T"),~] have equal
chances of being this agent. Also note that if an agent is explored and obtains the most successes before
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her first failure, then she obtains a benefit ©(7"). For this reason, conditional on contributing with quality
q € [G(T),~], the expected benefit the agent obtains is 9(Z R F,(q( )))pTK(T))'

Also note that we must have lim7p_,o G-(7") = 0 for all 7: if there is some 7 for which §,(7") remains
bounded away from zero for an infinite number of T', then the expected benefits to contributing with a quality
drawn randomly according to the mixed strategy equilibrium (unconditional on the agent’s type) would be
ETﬁT(TT)pT R = @(K(T)) ©(1) as T'— oco. But the expected cost to contributing according to the mixed
strategy equilibrium (unconditional on an agent’s type and quality choice) would diverge as T' — oo. Thus
the costs to participating would exceed the benefits for sufficiently large T, and we could not have such an
equilibrium in which there is some 7 for which 3,(7") remains bounded away from zero for an infinite number
of T.

Since limy_,o 5-(T) = 0 , we must have 3. (T) < 1 for all 7 for sufficiently large 7. But if 5.(T) < 1,
i.e., agents do not participate with probability 1, the zero payoff condition must apply, i.e., the expected cost
from participating equals the expected benefit for sufficiently large 7. That is, we must have E.[E[c,(q)|q ~
F7 (@) q € [4(1): ) = O(s—smym=rrammar)-

Now consider an agent who contributes with quality ¢ € [G(T),~] and consider what happens when an
agent, changes her quality by € for some small ¢ > 0. By Proposition A.1, this change increases the number
of successes the agent obtains before her first failure with probability ©(e) if the agent is explored. Also, this
change can only affect whether the agent obtains additional attention after her first failure if the agent either
had m(T') or m(T') — 1 successes. But the number of agents who obtain m(T") or m(T') — 1 successes stays
bounded in the limit as T — oo with probability arbitrarily close to 1. Combining this with the fact that
(unconditional on the precise realization of the agents’ qualities and types) all agents who contribute with
quality g € [¢(T),~] are equally likely to obtain m(T") or m(T') — 1 successes shows that the probability such

an agent obtains m(7T) or m(T') — 1 successes is 9(2 BT - G K(T)). From this it follows that if an
T T T T

agent changes her quality by e for some small ¢ > 0, the probability this affects whether she obtains additional
attention after her first failure is O(Z i

A= F @ K-
The expected additional benefit from increasing quality by € is therefore O(Z A= PfTT@(T)))p K(T)),
T T T T

since if an agent wins as a result of making this change, then she obtains an additional ©(7) attention and
this happens with the probability derived above. Thus in order for agents to not be able to profitably deviate
by making infinitesimal changes to their quality choices, it must be the case that E;[E[c,.(q)|qg ~ FT(q)]|q €

[4(T), 7)) = O(smrmma—rraamerm)-
Combining this with the fact that E;[Ec-(q)lq¢ ~ FJ(q)llq € [¢(T),~]] = ©(

E;[E[c ()lg~F7(9)]lg€[d(T),7]]
Er[Ele-(9)lg~F7(9)]lq€[d(T) ]|

T
S BT Fp @) K(T))

shows that = O(1). But for any set of distributions F7.(q), it must be the case that

. E,[Elc ~F7(q i(T), . o
limp_, o I?){E%CTE ;}ZNF%%”ZSZET;;H = 0o because lim,_,~ log ¢-(g) = oo for all 7, meaning lim,_- diq log ¢, (q) =
(g

limg ., @ = X for all 7. This gives a contradiction which shows that it must be the case that there exists
some ¢* < = such that the probability agents choose quality ¢ > ¢* in equilibrium goes to zero in the limit as
T goes to infinity. [J

Proof of Lemma 4.1: Since no more than G(7T) contributions are explored for any given 7', the contri-
bution ¢ that is displayed most often must receive at least % = w(InT) units of attention. Therefore, the

for this contribution i tends to ¢; as T" — oo.

value of ¢! + zng

1
2lnT
nt

Now if any contribution j is explored only o(InT') times, then the value of qt + tends to oo as

21nT 21nT

>q + , which would in turn

mean that there is some threshold ¢* such that contribution ¢ would never be explored for all ¢ > t*. Therefore,
it cannot be the case that ¢ is explored infinitely often while j is only explored o(InT') times, so it must be the
case that each contribution j is explored Q(InT') times, regardless of the qualities of the contributions.

Now consider a contribution with quality ¢; < gmaz(T) — 6. Note that it cannot be the case that this
contribution receives w(lnT') units of attention: if this contribution receives w(In7T) units of attention, then

T — oo. For sufficiently large t and T', this would imply that q;f. +
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21nT

q§- + ./ 22@7 tends to ¢; for large ¢ in probability. But for a contribution ¢ with quality ¢; = gmaa(T), qt+
J

tends to a value that is at least as large as ¢; for large ¢ in probability. Thus since ¢; < @¢maz(T) — 9, th1s

21nT

would imply that ¢! + > qj + \/2;@ for large ¢ in probability. This in turn implies that there is
J

some threshold ¢* such that j is never explored for all ¢ > t* in probability, meaning contribution j cannot be
explored infinitely often. This contradicts the possibility that contribution j receives w(InT") units of attention
in expectation. Combining this with the result in the previous paragraph shows that any contribution with
quality ¢; < ¢maz(T") — 0 obtains ©(InT") units of attention in expectation. O]

Proof of Theorem 4.2: Suppose not. Then there is some ¢* < 7 such that there are infinitely many
values of T for which the probability that an agent with quality ¢ > ¢* is explored is less than or equal to « for
some 7 < 1. Throughout the remainder of the proof, we restrict attention to values of T' in this subsequence.

Note that if an agent chooses quality g; > ¢* + € for some € > 0 and this agent’s contribution is explored,
then the agent obtains an expected amount of attention ©(7"). To see why, consider some other contribution ¢
with quality ¢; < ¢*. This contribution i receives O(InT') units of attention in expectation, because if i receives

w(InT) units of attention, then ¢! + QIHT tends to ¢; for large ¢ in probability, while q] 217’;1T tends to a

value that is greater than or equal to q] > ¢;- But this means there is some threshold t* such that ¢ is never
explored for all ¢ > t* in probability, meaning 7 cannot be explored infinitely often. This gives a contradiction
which shows that i receives O(InT") units of attention in expectation.

Therefore, if an agent chooses quality g; > ¢* + € for some € > 0 and this agent’s contribution is explored
and all other contributions that are explored have quality ¢; < ¢*, then the contributions with quality ¢; < ¢*
receive only a total of O(min{G(T"), k(T)} InT) units of attention in expectation, so that agent j receives ©(T")
units of attention in expectation by our assumption on G(7"). But the probability that all other contributions
that are explored have quality ¢; < ¢* is at least 1 — 7 > 0, i.e., is bounded away from 0 for all 7. Thus,
conditional on being explored, this agent obtains an additional ©(T") units of attention from this deviation, so
that the expected additional benefit from deviating (unconditional on being explored) is @(W),

which becomes unbounded as 7" — oo since k(1) < T and G(T') — oc.

This implies that if there is some subsequence such that the probability there is a contribution that is
explored and has quality ¢; > ¢* is no greater than m for some m < 1, then an agent can profitably deviate by
choosing a quality ¢; > ¢* + €. Thus for any ¢* < v, the probability there is a contribution that is explored
and has quality ¢; > ¢* goes to 1 in the limit as 7" — oco. O

Proof of Theorem 4.3: Suppose by means of contradiction that Mycg_mop does not achieve strong
sublinear regret. Then there exists some ¢ > 0 such that the expected number of failures in Mycs_mop is at
least ((1—-)+9)T for sufficiently large T'. In order for this to take place, it must be the case that Muycs_mop
displays contributions with quality ¢; < v — § on ©(T') separate occasions.

Since there are no more than G(T") contributions to be explored, there must be at least one contribution
with quality ¢; < v — ¢ that is explored at least O(4 ar )) times, i.e., w(InT) times. For this contribution,

Q' + 21nT
7

Now Theorem 4.2 guarantees that there will almost certainly be at least one explored contribution with
quality arbitrarily close to « in the limit as T — oco. That is, the highest quality contribution j explored by

Muycs-Mobp has a quality ¢; that tends to v as T' — oo.
21nT

tends to g; for large ¢ in probability.

For this contribution, q§- + tends to a value that is no smaller than  for large ¢ in probability. But

then ¢! + ZlnT < q] + /2lnT for large t in probability. This implies that there is some threshold t* such

that contrlbutlon 1 is never explored for all ¢ > t*, which contradicts the possibility that the algorithm displays
contribution 7 infinitely often. Therefore, it cannot be the case that Mycs_mop displays contributions with
quality ¢; < v — ¢ on ©(T) separate occasions in the limit as T — oo, and so the modified UCB mechanism
achieves strong sublinear regret. [J

Proof of Lemma 4.2: Since no more than G(T") contributions are explored for any given 7', the contribu-

tion 7 that receives the m* most attention must receive at least % = w(InT) units of attention. Therefore,
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21nT

the value of ¢! + for this contribution i tends to ¢; as T — oo.

21nT

Now if any contribution j receives only o(InT') attention, then the value of qj + tends to oo as

T — oo. For sufficiently large t and 7', this would imply that qj + /= 21nT > gl + Wthh would in turn

mean that there is some threshold t* such that contribution ¢ would never be explored for all ¢ > t*. Therefore,
it cannot be the case that i receives an infinite amount of attention while j only receives o(InT') attention,
so it must be the case that each contribution j receives Q(InT') attention, regardless of the qualities of the
contributions.

Now consider a contribution with quality ¢; < ¢,(T) — 6. Note that it cannot be the case that this

contribution receives w(lnT') units of attention: if this contribution receives w(InT") units of attention, then
t 2InT 2lnT
N

tends to g; for large ¢ in probability. But for a contribution ¢ with quality ¢; = ¢,,,(T), ¢} +

tends to a value that is at least as large as g; for large t in probability. Thus since ¢; < ¢,,(T") — 0, this would
21nT

imply that ¢!+ > q] +./ Q%T for large t in probability. This in turn implies that there is some threshold

t* such that j is never explored for all ¢ > t* in probability, meaning contribution j cannot receive an infinite
amount of attention. This contradicts the possibility that contribution j receives w(ln7") units of attention
in expectation. Combining this with the result in the previous paragraph shows that any contribution with
quality ¢; < ¢m(T") — 6 obtains ©(InT') units of attention in expectation. [J

Proof of Theorem 4.4: Suppose not. Then there is some ¢* < 7 such that there are infinitely many
values of T' for which the probability that at least m agents with quality ¢ > ¢* are explored is less than or
equal to 7 for some m < 1. Throughout the remainder of the proof, we restrict attention to values of T" in this
subsequence.

Note that if an agent chooses quality q; > ¢* + € for some € > 0 and this agent’s contribution is explored,
then the agent obtains an expected amount of attention ©(T"). To see why, consider some other contribution ¢
with quality ¢; < ¢*. This contribution i receives O(InT') units of attention in expectation because if 7 receives

w(InT) units of attention, then ¢! + , /25 21nT tends to g; for large ¢ in probability, while q + /25 2lnT tends to a

value that is greater than or equal to g; > ¢;- But this means there is some threshold ¢* such that 1 is never
explored for all t > t* in probability, meaning ¢ cannot receive an infinite amount of attention. This gives a
contradiction which shows that i receives O(InT") units of attention in expectation.

Therefore, if an agent chooses quality ¢; > ¢* + € for some € > 0 and this agent’s contribution is explored
and there are no more than m contributions that are explored that have quality ¢; > ¢*, then the contributions
with quality ¢; < ¢* receive only a total of O(min{G(T), k(T)}InT) units of attention in expectation, so that
agent j receives O(T') units of attention in expectation by our assumption on G(T'). But the probability that
there are no more than m contributions that are explored and have quality ¢; > ¢* is at least 1 — 7 > 0, i.e.,
is bounded away from 0 for all 7. Thus, conditional on being explored, this agent obtains an additional ©(T")
units of attention from this deviation, so that the expected additional benefit from deviating (unconditional on
being explored) is @(W), which becomes unbounded as 1" — oo since k(7)) < T and G(T') — oo.

This implies that if there is some subsequence such that the probability there are no more than m contri-
butions that are explored that have quality ¢; > ¢* is no greater than m for some m < 1, then an agent can
profitably deviate by choosing a quality g; > ¢* + €. Thus for any ¢* < -, the probability there are at least m

contributions that are explored that have quality ¢; > ¢* goes to 1 in the limit as T' — oo. [J

Proof of Theorem 4.5: Suppose by means of contradiction that Mycg_mop does not achieve strong
sublinear regret. Then there exists some d > 0 such that the expected number of failures in Mycp_mop is at
least (Z;n:l pj(1 —7) 4+ pmd)T for sufficiently large 7. In order for this to take place, it must be the case that
Muycs-mop displays contributions with quality ¢; <y — ¢ on O(T') separate occasions.

Since there are no more than G(T") contributions to be explored, there must be at least one contribution
with quality ¢; < v — ¢ that is explored at least O( (T)) times, i.e., w(InT) times. For this contribution,

qi + QIHT tends to ¢; for large ¢ in probability.
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Now Theorem 4.4 guarantees that there will almost certainly be at least m explored contribution with
quality arbitrarily close to 7 in the limit as 7 — oo. That is, the m'" highest quality contribution j explored

by Mucs—mop has a quality ¢; that tends to v as T' — oo.

2InT
t
nj

For this contribution, qj- + tends to a value that is no smaller than v for large ¢ in probability. But

2InT
e

2InT
nt
J

then ¢! + < q§- +
that contribution 7 is never explored for all ¢ > ¢*, which contradicts the possibility that the algorithm displays
contribution ¢ infinitely often. Therefore, it cannot be the case that Mycp_mop displays contributions with
quality ¢; < v — ¢ on ©(T) separate occasions in the limit as 7" — oo, and so the modified UCB mechanism

achieves strong sublinear regret. [J

for large t in probability. This implies that there is some threshold ¢* such
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