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ABSTRACT
Most models for online advertising assume that an adver-
tiser’s value from winning an ad auction, which depends on
the clickthrough rate or conversion rate of the advertise-
ment, is independent of other advertisements served along-
side it in the same session. This ignores an important ex-
ternality effect: as the advertising audience has a limited
attention span, a high-quality ad on a page can detract at-
tention from other ads on the same page. That is, the utility
to a winner in such an auction also depends on the set of
other winners.

In this paper, we introduce the problem of modeling ex-
ternalities in online advertising, and study the winner de-
termination problem in these models. Our models are based
on choice models on the audience side. We show that in
the most general case, the winner determination problem
is hard even to approximate. However, we give an approx-
imation algorithm for this problem with an approximation
factor that is logarithmic in the ratio of the maximum to the
minimum bid. Furthermore, we show that there are some
interesting special cases, such as the case where the audi-
ence preferences are single peaked, where the problem can
be solved exactly in polynomial time. For all these algo-
rithms, we prove that the winner determination algorithm
can be combined with VCG-style payments to yield truthful
mechanisms.

Categories and Subject Descriptors
F.2.0 [Analysis of Algorithms and Problem Complex-
ity]: General; J.4 [Social and Behavioral Sciences]: Eco-
nomics

General Terms
Algorithms, Economics, Theory

Keywords
Advertising, externalities, auctions, approximation algorithms

1. INTRODUCTION
Much of the work on auctions for online advertising as-

sume that a bidder has an intrinsic value for winning an
auction: given that a bidder is declared a winner of an ad
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slot, he derives some private utility, which is unaffected by
the number or set of other winners. However, this is not
necessarily true, especially in the context of advertising: ad-
vertisers compete for users’ attention, and the attention a
particular winning advertiser receives clearly depends on the
set of all winners. In this paper, we are interested in the
problem of mechanism design in a setting with externali-
ties, i.e., when a winner’s utility depends on the set of other
winners.

The problem of mechanism design with externalities can
be motivated in multiple settings in the context of online
advertising, for instance, in the setting of sponsored search
(e.g., Google’s Adwords or Yahoo!’s Search Marketing) or ad
placement on content pages (e.g., Google’s Adsense or Ya-
hoo!’s Content Match). In this paper we focus on a setting
commonly known as online lead generation, or the pay-per-
lead model [11]. The objective of online lead generation is to
sell credible leads (in the form of personal information of a
potential customer) to companies, or advertisers, interested
in such leads. The advertisers then contact the potential cus-
tomer directly to offer quotes and information about their
service. This model of advertising is currently most popular
among financial firms that offer mortgages, insurance com-
panies, auto dealers interested in potential buyers of new
cars, and the distance education industry1. According to
the PricewaterhouseCoopers’ IAB Revenue Report for year
2006 [12], lead generation revenues accounted for 8 percent
of the 2006 full year revenues or $1.3 billion, up from the
6 percent or $753 million reported in 2005. In addition to
having been the initial motivation of the present work, focus-
ing on the lead generation model has the advantage that it
simplifies the discussion of externalities by abstracting away
aspects of the problem relating to the specific placement of
the ads on a page. We will briefly discuss such issues and
their interplay with the externality problem at the end of
this paper.

The main problem faced by a lead generation company
that has acquired a lead is the following tradeoff: if the
lead is sent to fewer advertisers, the value to each advertiser
will be higher since they are competing with fewer other ad-
vertisers for the potential customer. Further, the value to
an advertiser might also depend specifically on which other
advertisers obtain the lead, not just how many others: a

1Another growing industry that can be studied in the frame-
work of “lead generation” is online dating services. However,
since currently the standard in this industry is based on flat-
fee subscription and not pay-for-performance, our models
might not be directly applicable.



competing advertiser who provides a similar service and is
very likely to offer a better deal to the user decreases the
value of the lead much more than a less competitive adver-
tiser, or an advertiser who is offering a different service (e.g.,
a Toyota dealer might decrease the value to a Honda dealer
more than a Ford dealer does). In any case, the utility to an
advertiser who buys a lead depends on other buyers of the
same lead. In addition, typically a lead can only be sold to
a limited number of advertisers, as specified in the privacy
policy of the website [11].

In the most general and abstract form, the problem we
are interested in is the following: there are n bidders, each
with a utility function ui : 2{1,...,n} 7→ R, where ui(S) is
the utility that bidder i derives when the set of winners is
S ⊂ {1, . . . , n}. It is reasonable to assume that ui(S) is zero
if i /∈ S. The problem is to design an incentive compatible
mechanism to maximize welfare. Such a mechanism would
select the subset of bidders that maximizes

v(S) =
X
i∈S

ui(S).

VCG payments can be used to induce truthful reporting if
the optimal subset can be found: every bidder i is charged
the difference between the value of the optimal set when i
is removed from the set of bidders and v(S)− ui(S), which
is the value derived by all remaining winners in the current
solution.

Since specifying a utility function of the form above takes
exponential space in the number of bidders, we are inter-
ested in investigating models for utility functions that are
both realistic in the context of online advertising, and also
allow compact representation. We build such a model by
looking at the choice problem from the advertising audi-
ence’s perspective. Our model assumes that customers have
(possibly interdependent) valuations for different advertis-
ers (these valuations might be a function of the quote the
customer receives from the advertisers in a lead generation
business, or the perception of the quality of the product of-
fered by the advertiser) and also for an outside option. When
presented with a number of choices, they pick the advertiser
whom they have the highest valuation for, or no advertiser
if their valuation of the outside option is greater than the
valuations of all advertisers presented in the set. This model
is defined in more detail in the next section. We will study
the computational complexity of the winner determination
problem in this model, and prove that in the most general
case, if the distributions of the values are given explicitly,
the winner determination problem is hard to approximate
within a constant factor. On the other hand, we will give an
approximation algorithm that solves this problem within a
factor that is logarithmic in the ratio of the maximum to the
minimum bid. Furthermore, in several special cases, most
notably in the case that distributions are single-peaked, the
winner determination problem can be solved exactly in poly-
nomial time. We will prove that these algorithms, combined
with a VCG-style payment scheme, give rise to dominant-
strategy incentive compatible mechanisms.

Finally, we discuss alternative models for externalities,
and directions for future work.

Related work. Auctions with externalities have been
studied in the economics literature, the earliest related work
being that of Jehiel, Moldovanu and Stacchetti [7], where a

loser’s value depends on the identity of the winner. The
problem of mechanism design with allocative externalities
is also studied by Jehiel and Moldovanu [5], and Jehiel,
Moldovanu and Stacchetti [8]; Jehiel and Moldovanu [6] study
mechanism design with both allocative and informational
externalities. However, none of these papers address compu-
tational issues arising from the mechanism design problem.

To the best of our knowledge, this is the first theoretical
work that specifically addresses the problem of externalities
in online advertising. Limited experimental evidence for the
hypothesis that the click-through rate of ads depend on sur-
rounding ads is provided in the work of Joachims et al. [9].

2. THE MODEL
In this section, we define a model for externalities among

advertisers that is the focus of this paper. Our model is
based on the intuition that each advertiser has a private
value for capturing the business of the user (the advertising
audience). The user, on the other hand, gets exposed to a
number of ads, and chooses at most one of these ads based
on her perception of the quality of the advertiser. For ex-
ample, in the case of the lead generation business, the user
receives quotes from the advertisers who receive the lead,
and probably will choose the advertiser who gives her the
lowest quote, or none of the advertisers, if she receives a
better quote through another medium.

More formally, suppose there are n advertisers numbered
1, . . . , n, each with a private value vi (which is the value ad-
vertiser i derives when he is chosen by a user). The quality of
advertiser i (from the perspective of the user) is denoted by
qi. Furthermore, let q0 denote the quality of the best outside
option. These quality parameters qi are random variables,
drawn from a joint probability distribution Q. Intuitively,
considering qi’s as random variables (as opposed to deter-
ministic values) captures the fact that users do not all make
the same choices among the advertisers. Also, in general the
qi’s need not be independent, since the choices of users are
often dictated by the same general principles. For example,
knowing that a user perceives Ford autos as superior to Toy-
otas increases the likelihood that she also prefers Chevy to
Honda.

When a set S of advertisers is chosen, the user picks the
advertiser with the largest quality qi in S, if the quality of
this advertiser is greater than that of the outside option.
This advertiser then derives a value of vi; all other advertis-
ers derive a value of 0. So the expected value when a set S
of advertisers is chosen is

v(S) =
X
i∈S

viPr[∀j ∈ S ∪ {0} : qi ≥ qj ],

where the probability is over a random draw of (q0, q1, . . . , qn)
from Q. For simplicity, we assume that qi’s are always dis-
tinct, and therefore we do not need to specify how ties are
broken.

The winner determination problem in this model is to
choose a set S of at most a given number k of advertis-
ers to maximize v(S). Note that v(S) is not monotone in
S: adding an advertiser with low value but high quality can
actually cause a net decrease in the value of the set. The
winner determination problem can be written as the follow-



ing mathematical program:

maximizexi

Pn
i=1 vixiPr[∀ j = 0, . . . , n : qi ≥ qjxj ]

s.t.
Pn

i=1 xi ≤ k,
xi ∈ {0, 1}, i = 1, . . . , n,
x0 = 1.

(1)
Before we can start talking about the computational com-

plexity of the winner determination problem, we need to
specify how the input is represented. In particular, there
are many ways the distribution Q can be represented. In
this paper, we mainly consider an explicit representation of
Q, i.e., when the distribution has a finite support and all el-
ements of the support of this distribution are listed as part
of the input (as explained below). This is perhaps the sim-
plest way to represent the distribution, and our hardness
result in the next section (showing that the winner deter-
mination problem is hard to approximate for this represen-
tation) clearly carries over to stronger representations, such
as models where Q is given by an oracle.

Observe that in our model, the actual values of the quality
parameters qi do not matter; all that matters is the relative
ordering of the qualities. Specifically, the only real informa-
tion we use from the distribution is the probability of each
ranking of the bidders’ qualities and the quality of the out-
side option. In other words, we can assume that there are a
finite number of different user types, and each user type j is
given by a real number which indicates the probability that
a random user is of type j, and a permutation of the n + 1
options {0, . . . , n} (with 0 representing the outside option
and 1, . . . , n representing the advertisers). Note that the or-
dering of advertisers that occur after the outside option in a
permutation is irrelevant, and therefore can be omitted. To
summarize, the externality problem with an explicitly given
distribution can be formulated as follows.

Winner Determination Problem with Externalities:

Input: - Integers n, m, and k,

- a value vi for each i = 1, . . . , n,

- a probability pj for each j = 1, . . . , m
with

Pm
j=1 pj = 1, and

- a permutation πj of {0, . . . , n}
for each j = 1, . . . , m.

Output: A subset S of {1, . . . , n} with |S| ≤ k that max-
imizes

v(S) :=

mX
j=1

pj

X
i∈S

viI(∀ l ∈ S ∪ {0} : πj(i) ≤ πj(l)),

where I(∀ l ∈ S ∪ {0} : πj(i) ≤ πj(l)) denotes the indi-
cator variable for the event that i is the highest element in
permutation πj of all members of S ∪ 0.

In the next section, we will show a strong hardness re-
sult for the above problem. In Section 4 we will give an
approximation algorithm, and in Section 5 we prove that
the problem is solvable in polynomial time if preferences πj

are single-peaked, and also in another special case of the
problem with implicitly given distributions.

3. HARDNESS OF THE WINNER DETER-
MINATION PROBLEM

We show that the winner determination problem defined
in the previous section, even with no cardinality constraints
(i.e., k = n), is NP-hard, and hard to approximate. The
proof is based on a reduction from the independent set prob-
lem in graphs. Recall that in the independent set prob-
lem, we are given a graph G and the objective is to find
a maximum-cardinality subset S of vertices with no edge
between any two vertices of S. H̊astad [14] proved that
this problem cannot be approximated in polynomial time to
within a factor of n1−ε for any ε > 0, unless NP = ZPP.

Theorem 1. The winner determination problem with ex-
ternalities is hard to approximate in polynomial time within
a factor n1−ε for any ε > 0, unless NP = ZPP.

Proof. Given an instance G of the independent set prob-
lem, we map it to an instance of the winner determination
problem with externalities as follows. Let n = m = k =
|V (G)|, and assume the nodes in the graph G are numbered
1, . . . , n. Corresponding to each node i, we create an ad-
vertiser i with value vi = Li, where L is a sufficiently large
number (as we will see, it is enough to take L = n2). Also,
for each node i, we create a user type i with probability
pi = c/Li, where c is a normalizing constant that ensuresPn

i=1 pi = 1.
The permutation πi corresponding to user type i is con-

structed as follows. Let N−
i := {j : j < i and ij ∈ E(G)}

denote the set of neighbors of i in G that have an index
less than i. The permutation πi ranks the elements of N−

i

in an arbitrary order at the top, followed by i, followed by
the outside option 0 (recall that the ordering of elements
after the outside option is not important). This completes
the definition of the instance of the winner determination
problem.

Now, we show that if the size of the maximum indepen-
dent set in the graph G is t, then the value of the solution
of the above instance of the winner determination problem
is between ct and ct + cn

L
. Let I denote the maximum inde-

pendent set of G (|I| = t). First, we prove that the value of
the solution to the winner determination problem is at least
ct. To show this, it is enough to take S = I. Since I is an
independent set, for every i ∈ S, the first element of πi that
is in S is i. Therefore, for every such i, users of type i con-
tribute a total value of pi × vi = c to the objective function.
Hence, the value of the set S is precisely v(S) = ct.

Next, we prove that no set S in the instance of the win-
ner determination problem has value more than ct + cn

L
. To

show this, take the optimal set S in the winner determina-
tion problem, and define an independent set I in the graph
as follows: start with I = ∅, and process vertices of S in
increasing order of their index. For every vertex i ∈ S, if no
neighbor of i is added to I so far, add i to I. Clearly, at the
end of this procedure, we obtain an independent set I of G.
We show that the value of the set S is at most c|I|+ cn

L
. To

see this, note that for every element i that is in S but not
in I, the vertex i must have a neighbor j ∈ S with j < i.
Consider such a j with the smallest index. By definition, j
appears before i in πi. Therefore, the contribution of each
such user type i to v(S) is at most pivj ≤ c/L. For ev-
ery i ∈ I, the contribution of i to v(S) is at most pivi = c.
Summing up these contributions, we obtain v(S) ≤ c|I|+ cn

L
.

Since I is an independent set, we get v(S) ≤ ct + cn
L

.



Therefore, if we take L > n2, the value of the solution
of the winner determination problem divided by c is within
(1 ± o(1)) of the size the maximum independent set of G.
Thus, by the hardness of the independent set problem [14],
the winner determination problem cannot be approximated
within a factor of n1−ε for any ε > 0, unless NP = ZPP.

The above theorem rules out the possibility of finding an
algorithm for the winner determination problem with any
approximation factor that is a reasonable function of n.
However, note that the instances constructed in the above
hardness result contain advertisers whose values differ by a
large factor (n2n). This raises the question of whether one
can approximate the winner determination problem within
a factor that depends on the spread between the largest and
the smallest values. The answer to this question is indeed
positive, as we will see in the next section.

4. APPROXIMATION ALGORITHM
We now present an approximation algorithm for the win-

ner determination problem which can be used to design
an incentive compatible mechanism for the auction prob-
lem with externalities. The hardness result in the previous
section rules out any approximation that is better than a lin-
ear factor in the number of advertisers; our approximation
is therefore in terms of the spread of the advertiser values:
we show that the winner determination problem can be ap-

proximated to within a factor of e2

e−1
(dln Re+1), where R is

an upper bound on the ratio between the highest value and
the lowest value an advertiser could have.

We begin with the following lemma, which shows that the
problem can be solved approximately when all values are
close to each other.

Lemma 1. The winner determination problem can be ap-
proximated to within a factor e

e−1
R, where R is an upper

bound on the ratio between the highest value and the lowest
value an advertiser could have.

Proof. First suppose that v1 = . . . = vn, i.e., all adver-
tiser values are equal. Then the problem of winner deter-
mination with externalities is exactly a weighted version of
the classical max k-coverage problem [15]: the elements are
the m user types with weights pj (j = 1, . . . , m), the sets
are the advertisers i = 1, . . . , n, and an advertiser i covers
a user type j if i appears in πj before 0, i.e., if user type j
prefers i over the outside option.

The greedy approximation algorithm for the maximum
k-coverage problem can be easily generalized to solve the
weighted version: the algorithm proceeds in iterations, in
each iteration picking an advertiser that covers a set of pre-
viously uncovered user types of maximum total weight. It is
not hard to see that this algorithm achieves an approxima-
tion factor of e/(e−1) for the weighted maximum k-coverage
problem [15]. The winner determination problem can be ap-
proximated to within the same factor when all values are
equal. If advertisers have unequal values, we can obtain a
factor e

e−1
R by simply ignoring the values and solving the

weighted max-coverage problem.

We will now build on this observation to obtain a random-
ized algorithm with a ratio that is logarithmic in R. Then
we will show how this algorithm can be turned into a mono-
tone algorithm (a property that is needed in order to achieve
incentive compatibility), and how it can be derandomized.

For a given subset S ⊆ {1, . . . , n}, denote by OPTk(S) the
value of the optimal solution to the weighted max-k-coverage
problem restricted to the subset of advertisers S, Pk(S) the
value of the solution returned by the greedy algorithm to the
weighted max k-coverage problem, and denote by S∗k(S) the
subset of advertisers from S chosen by the greedy algorithm.

Assume vmin is a known lower bound, and vminR is a
known upper bound on the value of an advertiser. We will
show later that our derandomized algorithm works even if
we do not know the values of vmin and R. Divide advertisers
into buckets 1 through L, where L = dln Re and bucket Bl

consists of advertisers with values vi ∈ [el−1vmin, elvmin).

Algorithm A1:

• Randomly choose one of the buckets B1, . . . , BL, say
Bl.

• Solve the weighted max k-coverage problem with input
Bl; let S∗k(Bl) be the set of advertisers returned by the
greedy algorithm.

• Return S∗k(Bl) as the set of winners.

Theorem 2. Algorithm A1 approximates the winner de-

termination problem to within a factor of e2

e−1
dln Re.

Proof. Let SOL1 denote the expected welfare from the
solution chosen by the above algorithm:

SOL1 ≥
LX

l=1

1

L
vminel−1Pk(Bl), (2)

where Pk(Bl) is the weight of the solution chosen by the
greedy algorithm for max k-coverage, with input restricted
to the set of advertisers with values in [el−1vmin, elvmin], as
defined before. The welfare from the optimal set of adver-
tisers for the winner determination problem SOPT is

OPT =
X

i∈SOP T

viP (i, SOPT )

=

LX
l=1

X
i∈SOP T∩Bl

viP (i, SOPT )

≤
LX

l=1

vminel
X

i∈SOP T∩Bl

P (i, SOPT ), (3)

where P (i, SOPT ) =
P

{j:∀i′∈SOP T∪{0}, πj(i)≤πj(i′)} pj is the

total weight of the permutations where i is ranked above all
other elements in SOPT and the outside option.

Since Pk(Bl) is the solution returned by the greedy al-
gorithm for the maximum k-coverage problem restricted to
advertisers in Bl, and SOPT ∩Bl is a solution for this prob-
lem of value at least

P
i∈SOP T∩Bl

P (i, SOPT ), we haveX
i∈SOP T∩Bl

P (i, SOPT ) ≤ e

e− 1
Pk(Bl).

Combining (2) and (3) with this, we get

OPT ≤ e2L

e− 1
SOL,

i.e., an approximation factor of e2

e−1
dln Re.



It is a well-known theorem (see, for example, Archer and
Tardos [1]) that in a setting with one-dimensional types,
in order to design an incentive compatible mechanism, one
needs an allocation algorithm that is monotone: the proba-
bility of winning should not decrease if an advertiser’s value
increases. The above algorithm does not have this property:
for example, if advertiser i is the only advertiser in an in-
terval Bl, she wins with probability 1/L independent of her
position in the permutations, whereas she may not be chosen
as a winner in her new bucket if her value increases.

The following modification ensures that the allocation al-
gorithm is monotone.

Define the (overlapping) buckets

Bl = {i : vi ≥ vminel−1},

i.e., Bl = Bl∪. . .∪BL is the union of the buckets Bj from l to
L. Denote by Pk(Bl) the value of the greedy solution of the
weighted max k-coverage problem restricted to advertisers
in Bl.

Algorithm A2:

• Randomly choose one of the buckets B1, . . . , BL, say
Bl.

• Solve the weighted max-k-coverage on Bl using the
greedy algorithm; let S∗k(Bl) be the set of advertisers
returned by the greedy algorithm.

• Return S∗k(Bl) as the set of winners.

Theorem 3. The algorithm A2 is monotone, and approx-
imates the winner determination problem to within a factor

of e2

e−1
dln Re.

Proof. The proof of the approximation ratio follows sim-
ply from Theorem 2 and noting that

Pk(Bl) ≥ Pk(Bl),

since Bl ⊆ Bl. To prove the monotonicity, note that for any
bucket Bl and any advertiser i, if this advertiser is in Bl,
after increasing the value vi, she still remains in this bucket.
Therefore, conditioned on any value of l, increasing vi (while
holding everything else constant) cannot remove i from Bl

and therefore cannot decrease i’s chance for being included
in the solution.

Finally, we show that our algorithm can be derandom-
ized while maintaining the monotonicity property. The idea
of derandomization is easy: instead of picking a random
bucket, check all buckets and pick one that gives the high-
est value. However, one needs to be careful as this trans-
formation can sometimes turn a monotone algorithm into
a non-monotone one. In our case, we can use properties of
the greedy maximum k-coverage algorithm to prove that the
algorithm remains monotone.

In addition to decreasing uncertainty, one advantage of
the derandomized algorithm is that it can be implemented
without knowledge of the values of vmin or even R.2 In order
2Note that for the purpose of solving the algorithmic ques-
tion, having a prior knowledge of vmin and R is not impor-
tant, since these values can be computed from the input.
However, doing so can violate the monotonicity property;
for example, if the advertiser that has the minimum vi in-
creases her value, this changes the structure of the buckets
and could result in decreasing her chance of getting selected.

to do this, for every integer l, we define the bucket Bl as the
set of advertisers of value at least el (Bl = {i : vi ≥ el}).
By the definition of R, there are at most dln Re + 1 non-
empty distinct buckets. We can now define the deterministic
algorithm as follows:

Algorithm A3:

• Run the greedy algorithm for the max-k-coverage prob-
lem on the buckets Bl for all l.

• Choose bucket Bl∗ such that

l∗ = arg max
Bl

v12
l−1Pk(Bl).

• Return S∗k(Bl∗) as the set of winners.

Theorem 4. The algorithm A3 is monotone, and approx-
imates the winner determination problem to within a factor

of e2

e−1
(dln Re+ 1), where R is an upper bound on the ratio

between the highest value and the lowest value an advertiser
could have.

Proof. The approximation ratio follows from Theorem 3
and the fact that the maximum of a set of numbers is not
less than their average. We now prove that the algorithm A3

is montone. Suppose that bidder i is a winner, and has value
vi ∈ [el, el+1), i.e., i is in bucket Bl and every bucket before
that. Since she is a winner, ejPk(Bj) is maximized for some

j = l∗ ≤ l. Suppose v+
i > vi is such that v+

i ∈ [el+ , el++1).
We need to show that after increasing i’s value to v+

i , i is
still a winner.

Note that P (Bl′) is unchanged for all l′ ≤ l, since Bl′ is
unchanged for these sets, and the values of bidders in Bl′

do not affect the value of P (Bl′), or the set of bidders cor-
responding to P (Bl′). For the sets Bl′ with l < l′ ≤ l+,
the only addition is the bidder i. Since the algorithm used
to compute P (Bl′) is the deterministic greedy algorithm for
weighted max-k coverage [15], P (Bl′) changes only if the
algorithm chooses i in the winning set. Thus if P (Bl′) ≥
P (Bl∗), i is chosen as a winner in Bl′ . Therefore, the allo-
cation algorithm is monotone.

The above theorem, together with the theorem of Archer
and Tardos [1] implies that there is a dominant-strategy
incentive-compatible mechanism for ad auctions with exter-
nalities that can approximate the social welfare to within a

factor of e2

e−1
(dln Re+ 1) of the optimum.

5. ALGORITHMS FOR SPECIAL CLASSES
OF USER PREFERENCES

The result in the previous section says that the problem
of choosing the optimal set of advertisers cannot even be
approximated well, in the most general case. However, as we
will show in this section, the problem can be solved exactly
in certain special cases.

5.1 Single-peaked preferences
Single-peaked preferences form an important domain of

preferences, and are well-studied in the contexts of majority
voting and Arrovian social welfare functions, strategyproof
voting rules, and fair division, among others (see, for exam-
ple, [3, 13]).



We start by defining the notion of single-peaked prefer-
ences in the context of the externality problem. Recall that
the preference of each user type j is given as a permuta-
tion πj of {0, 1, . . . , n}, where 0 is the outside option and
1, . . . , n represent advertisers. We say that the user prefer-
ences are single-peaked (with respect to the ordering 1, . . . , n
of the advertisers), if for every user type j, there is a value
aj ∈ {1, . . . , n}, such that for every 1 ≤ x < y ≤ aj , adver-
tiser y is preferred to advertiser x according to πj , and for
every aj ≤ x < y ≤ n, advertiser x is preferred to advertiser
y according to πj . In other words, each user type j has an
ideal advertiser aj , and advertisers before aj are ranked ac-
cording to their distance to aj , and similarly for advertisers
after aj . No restriction is placed on how j ranks two adver-
tisers, one before aj and the other after aj , or how she ranks
any advertiser in comparison to the outside option.

The following theorem gives an algorithm for the winner
determination problem with externalities, when preferences
are single-peaked, with respect to a known ordering 1, . . . , n.

Theorem 5. The winner determination problem with ex-
ternalities can be solved in polynomial time if user prefer-
ences are single-peaked.

Proof. We give a dynamic programming algorithm for
this problem. The main step is to define an appropriate sub-
problem, which can be solved recursively. The subproblem
we use is parameterized by two parameters i and r, with
1 ≤ i ≤ n and 1 ≤ r ≤ k, and is defined as follows:

Consider an instance of the winner determination
problem with externalities where the set of user
types is restricted to {j : aj ≥ i} (note that we
do not change the probabilities pj ’s, so in this
restriction the probabilities can add up to less
than 1. However, the problem is still well-defined
in this case). Let SOLi,r be the maximum value
v(S) of a set S satisfying the following: i ∈ S,
S ⊆ {i, . . . , n}, and |S| ≤ r.

We show how SOLi,r can be computed recursively. The
idea is to focus on the first advertiser after i that will be
included in the set S. If i′ is the index of this advertiser,
the value derived from user types j with aj ≥ i′ can be
written as SOLi′,r−1, since by the single-peaked property of
the preferences, none of these users prefers any advertiser
before i′ to i′. Users j with i ≤ aj < i′ will choose one of
the advertisers i and i′ or the outside option (again, by the
single-peaked property). Therefore, the total value of the
solution in this case can be written as

SOLi′,r−1 +
X

j∈Si,i′

pjvi +
X

j∈Si′,i

pjvi′ ,

where Si,i′ := {j : min(i, i′) ≤ aj < max(i, i′) and πj(i) <
min(πj(i

′), πj(0))} is the set of users whose ideal advertiser
is between i and i′ and prefer i to i′ and also to the outside
option. To compute SOLi,r, we need to take the maxi-
mum over all i′ of the above expression, and also of the case
where there is no such i′, i.e., i is the last advertiser that is
included in the set. In this case, the value of the subproblem
is

P
j∈Si,n+1

pjvi, where Si,n+1 := {j : aj ≥ i and πj(i) <

πj(0)} is the set of users whose ideal advertiser is after i and
who prefer i to the outside option. To summarize, SOLi,r

can be computed using the following recursive formula for
every r ≥ 2.

SOLi,r = max{
X

j∈Si,n+1

pjvi, max
i′>i

{SOLi′,r−1 (4)

+
X

j∈Si,i′

pjvi +
X

j∈Si′,i

pjvi′}}. (5)

For r = 1, we have SOLi,r =
P

j∈Si,n+1
pjvi. Using the

above recursions, one can compute all the SOLi,r’s in time
O(n2km). Using the above argument, it is easy to see that
the solution of the problem can be computed in terms of
these values as follows:

max
i=1,...,n

8<: X
j∈S0,i

pjvi + SOLi,r

9=; ,

where S0,i = {j : aj < i and πj(i) < πj(0)} is the set of
users whose ideal advertiser is before i and who prefer i to
the outside option. This gives an O(n2km)-time algorithm
to solve the winner determination problem with externalities
when user preferences are single-peaked.

Remark 1. Note that the size of the dynamic program-
ming table in the above algorithm is O(nk), which is inde-
pendent of the number of different user types. Therefore,
our algorithm can be adapted to the cases where there are
exponentially many user types, and they are given either by
an oracle, or with an implicit representation. The only in-
gredient needed is an algorithm that computes summations
like the ones in Equation (4).

5.2 Perturbed single ranking
We now consider another special case of the winner de-

termination problem, where user preferences are given im-
plicitly using the following distribution of advertiser qual-
ities: Advertiser i has quality qi = xi with probability pi

(where xi’s are a given distinct values), and −1 with prob-
ability 1 − pi; the quality is independent of all other ad-
vertisers’ qualities. The quality parameter for the outside
option is fixed at q0 = 0. This gives rise to exponentially
many permutations which are all subsets of a single underly-
ing permutation defined by the xi’s, but each advertiser i is
dropped from the permutation (independently) with proba-
bility 1− pi.

An interpretation of this model is that there is an under-
lying true quality rating amongst all advertisers (as given by
the ordering of the xi’s), and a user who is informed about
two advertisers i and j ranks them in this order. However,
with probability 1− pi, the user has not heard of advertiser
i, in which case she will not choose this advertiser. In other
words, users rank the advertisers according to independent
perturbations of the same ranking, under a particular model
of perturbation. As we will point out in Remark 2, the idea
can be generalized to more general“local”perturbation mod-
els.

The value of a set of advertisers S in this model can be
written as

v(S) =
X
i∈S

vipi

Y
j∈S,xj>xi

(1− pj). (6)

Theorem 6. The winner determination problem in the
above model can be solved exactly in polynomial time.



Proof. Again, we use dynamic programming to give a
Θ(nk)-time algorithm for the winner determination prob-
lem.

Number advertisers in decreasing order of xi, so that x1 >
x2 > · · · > xn. We consider the following subproblem: Let
SOLi,r denote the optimal value when no more than r adver-
tisers can be selected from the subset i, . . . , n of advertisers.
In other words, SOLi,r := maxS⊆{i,...,n},|S|≤r{v(S)}.

Note that v(S ∪{i}) for i < min(S) is pivi + (1− pi)v(S).
Using this, it is easy to prove the following recursion.

SOLi,r = max(SOLi+1,r, vipi + (1− pi)SOLi+1,r−1).

Starting from i = n (SOLn,r = pnvn for all r), we popu-
late a table with nk entries; computing each entry in the
table takes Θ(1) time. Therefore, the solution of the winner
determination problem, which is given by SOL1,k, can be
computed in time O(nk).

Remark 2. Note that the only thing our algorithm re-
lies on is that if i is before all elements of S, v(S ∪ {i})
can be computed from v(S). For many other models of per-
turbation that perturb the permutation locally and indepen-
dently, a similar approach works, perhaps by keeping a lim-
ited amount of information about the set S. As an example,
consider perturbations of the following form: swap the order
of the advertisers 2i − 1 and 2i in the underlying permuta-
tion with probability p′i, independently for all i; then from
the resulting permutation, drop element j with probability
pj, independently for all j. If i is before all elements of S,
v(S ∪ {i}) can be computed given v(S) and the lowest-index
element of S. Therefore, the winner determination prob-
lem can be solved in this perturbation model by a dynamic
programming algorithm with an n× n× k table.

6. ALTERNATIVE MODELS
In this section we discuss two other models that are not

based on a model of users’ choices, but are simpler and there-
fore might be more applicable in practice.

Pairwise multiplicative model. As before, there are n
advertisers with private values v1, . . . , vn. The model is de-
fined in terms of parameters aij ∈ [0, 1] for 1 ≤ i, j ≤ n. The
value of aij represents the factor by which advertiser j de-
creases the value to advertiser i, if both are chosen together
in the winning set. The value of a set S is

v(S) =
X
i∈S

vi

Y
j∈S\{i}

aij .

In terms of the computational complexity of the winner de-
termination problem, this problem is still hard to approxi-
mate, since by taking aij ∈ {0, 1}, one can see easily that the
independent set problem is a special case of this problem.

Uniform discount model. This model assumes that
different advertisers experience the same degree of discount,
which depends only on total weight of the set of winners.
More precisely, we assume each advertiser i has a private
value vi and a weight wi (the weight could correspond to
the conversion rate or another measure of the importance of
the advertiser), and we are given a non-increasing function
f : R 7→ [0, 1], which specifies the discount as a function of
the total weight of the advertisers in the set. The value of a

set S is given by

v(S) =
X
i∈S

vif(
X
j∈S

wj).

It is not hard to see that the winner determination problem
in this model can be solved using the algorithm for the knap-
sack problem: for every level W of the total weight, we can
compute the set SW of advertisers of maximum total value
whose weight add up to at most W . This can be computed
using a knapsack algorithm. The solution of the winner de-
termination problem is the maximum, over all choices of
W , of the value of SW . With an appropriate discretization
of values of W , this can be made into a polynomial time
approximation scheme for the problem. When weights are
small integers, this approach gives a polynomial time ex-
act algorithm for the problem. Turning the approximation
scheme for the winner determination problem into a truth-
ful mechanism remains an open question. One approach to
tackle this problem would be to use the techniques developed
in the context of multi-unit auctions [10].

7. DISCUSSION
In this paper, we discussed models for the externality

problem in online advertising. We proved that for the most
general model, the winner determination problem is com-
putationally hard, and gave algorithms for this problem in
some special cases.

We believe that the externality problem is a major issue
in the study of online advertising, and so far has not re-
ceived enough attention from the research community. In
the following, we list a few directions for future research.

Location-dependent externalities. The models stud-
ied in this paper, motivated by the lead generation busi-
ness, was developed for a setting where the only decision
made by the winner determination algorithm is the set of
advertisers who get an advertising opportunity (by receiv-
ing a lead), without any particular order. However, in the
cases where the auction decides which advertisements should
be displayed on a page (which is the more common case),
the winner determination algorithm should not only specify
which ads are displayed, but also in which slot each ad is
displayed. Furthermore, in this setting the externalities can
be location dependent: for example, a sponsored search ad
displayed in the 10th slot might impose no externality on
the ad displayed on the top slot. Therefore, in order to be
applicable to this setting, our model for externalities has to
be modified to take the locations into account.

A simple way to incorporate the location component into
our model is as follows: assume the slots are numbered
1, 2, . . . , K, from top to bottom. We assume a random user
only looks at the ads in the top X slots, where X is a random
variable with a given distribution. The user then decides
which of the ads she has looked at to click on, according to
one of our models.

Clearly, our hardness result for the winner determination
problem works for this more general model as well. It would
be interesting to find interesting special cases of this problem
that can be solved in polynomial time.

The long-term externality effect. In this paper,
our focus was on the immediate externality that advertisers
impose on each other, in terms of lowering the conversion
rate or the click-through rate of other advertisers in the same



session. There is also a long-term externality effect: if a user
finds the ads displayed on a website (e.g., sponsored search
ads on Google) helpful, he or she is more likely to click on ads
in the future, and conversely, if the ads are found to be not
relevant, the user will pay less attention to ads in the future.
This externality effect is well understood in the context of
traditional advertising, and is sometimes referred to as the
rotten-apple theory of advertising [4]. The implication of
this effect in the context of traditional advertising media is
in the domain of public policy: it is used to justify adopting
regulations against false advertising.

In the context of online advertising, however, there is
much more a publisher can do to measure this type of ex-
ternality and reward or punish advertisers based on whether
they create positive or negative externality. Publishers such
as Google or Yahoo often can track when a user revisits their
website and clicks on an ad, and also whether an ad leads
to a conversion or some action on the advertiser’s site. De-
signing mechanisms to extract the relevant information from
this wealth of data and use it to overcome the externality
problem and maximize the efficiency of the system in the
long run is an interesting research direction.

Learning externalities. Throughout this paper, we
studied the winner determination problem with externali-
ties, assuming that the parameters of the model – user pref-
erences in our main model – are known to the algorithm.
Learning these parameters given the history of choices made
by the users, or designing experiments in order to learn these
parameters remains open.

Diversity problem. It is known that having diversity
among the set of web search results or among the set of
products displayed on an electronic store front is valuable.
There has been some effort on designing algorithms in these
applications that give some weight to the diversity of the
solution set (see, for example, [16]). However, it is not clear
what is the right way to incorporate the diversity compo-
nent in the objective. Note that in our model, optimizing
for the value of solution in presence of externalities can au-
tomatically result in a diverse solution set. This is because
advertisers that are similar to each other impose greater
negative externality on each other (e.g., presumably an ad-
vertiser who sells Apple computers imposes little externality
on one that sells the fruit). This suggests that our frame-
work might be a good starting point for defining a diversity
optimization problem that is based on economic principles.

Dating problem. As mentioned earlier, online dating
services can also be considered in the framework of lead
generation. Similar externalities exist in the online dat-
ing industry: sending a woman w on a date with a man
m imposes a negative externality on all other men, since
it decreases their chances with w. Currently, online dating
services take one of the two extremes of either allowing un-
restricted search (i.e., a subscriber has access to the profiles
of anyone who meets his or her criteria, and can contact
them, which is the model adapted by Yahoo! Personals or
match.com), or matching people one pair at a time (this is
the model adapted by eHarmony). Chen et al. [2] initiated
the study of the eHarmony model from a stochastic opti-
mization point of view. An interesting direction for future
research is to study this problem in a model with external-
ities in order to strike the right balance between these two
extremes.
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