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Abstract. The effective resistance between two nodes of a weighted graph is the electrical resistance
seen between the nodes of a resistor network with branch conductances given by the edge
weights. The effective resistance comes up in many applications and fields in addition
to electrical network analysis, including, for example, Markov chains and continuous-time
averaging networks. In this paper we study the problem of allocating edge weights on
a given graph in order to minimize the total effective resistance, i.e., the sum of the
resistances between all pairs of nodes. We show that this is a convex optimization problem
and can be solved efficiently either numerically or, in some cases, analytically. We show
that optimal allocation of the edge weights can reduce the total effective resistance of the
graph (compared to uniform weights) by a factor that grows unboundedly with the size of
the graph. We show that among all graphs with n nodes, the path has the largest value
of optimal total effective resistance and the complete graph has the least.
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1. Introduction. Let N be a network with n nodes and m edges, i.e., an undi-
rected graph (V, E) with |V | = n, |E| = m, and nonnegative weights on the edges. We
call the weight on edge l its conductance and denote it by gl. The effective resistance
between a pair of nodes i and j, denoted Rij , is the electrical resistance measured
across nodes i and j when the network represents an electrical circuit with each edge
(or branch, in the terminology of electrical circuits) a resistor with (electrical) conduc-
tance gl. In other words, Rij is the potential difference that appears across terminals
i and j when a unit current source is applied between them. We will give a formal,
precise definition of effective resistance later; for now we simply note that it is a mea-
sure of how “close” the nodes i and j are: Rij is small when there are many paths
between nodes i and j with high conductance edges, and Rij is large when there are
few paths, with lower conductance, between nodes i and j. Indeed, the resistance Rij

is sometimes referred to as the resistance distance between nodes i and j.
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38 ARPITA GHOSH, STEPHEN BOYD, AND AMIN SABERI

We define the total effective resistance, Rtot, as the sum of the effective resistance
between all distinct pairs of nodes,

Rtot =
1
2

n
∑

i,j=1

Rij =
∑

i<j

Rij .(1)

The total effective resistance is evidently a quantitative scalar measure of how well
“connected” the network is, or how “large” the network is, in terms of resistance
distance. The total effective resistance comes up in a number of contexts. In an
electrical network, Rtot is related to the average power dissipation of the circuit with
a random current excitation. The total effective resistance arises in Markov chains
as well: Rtot is, up to a scale factor, the average commute time (or average hitting
time) of a Markov chain on the graph, with weights given by the edge conductances
g. In this context, a network with small total effective resistance corresponds to a
Markov chain with small hitting or commute times between nodes, and a large total
effective resistance corresponds to a Markov chain with large hitting or commute times
between at least some pairs of nodes. We will see several other applications where
the total effective resistance arises, including averaging networks, experiment design,
and Euclidean distance embeddings.

In this paper we address the problem of allocating a fixed total conductance
among the edges so as to minimize the total effective resistance of the graph. We can
assume without loss of generality that the total conductance to be allocated is 1, so
we have the optimization problem

minimize Rtot

subject to 1T g = 1, g ≥ 0.
(2)

Here, the optimization variable is g ∈ Rm, the vector of edge conductances, and
the problem data is the graph (topology) (V, E). The symbol 1 denotes the vector
with all entries 1, and the inequality symbol ≥ between vectors means componentwise
inequality. We refer to problem (2) as the effective resistance minimization problem
(ERMP).

We will give several interpretations of this problem. In the context of electrical
networks, the ERMP corresponds to allocating conductance to the branches of a
circuit so as to achieve low resistance between the nodes; in a Markov chain context,
the ERMP is the problem of selecting the weights on the edges to minimize the average
commute (or hitting) time between nodes. When Rij are interpreted as distances, the
ERMP is the problem of allocating conductance to a graph to make the graph “small,”
in the sense of average distance between nodes.

We denote the optimal solution of the ERMP (which we will show always exists
and is unique) as g! and the corresponding optimal total effective resistance as R!

tot.
In [15], Fiedler introduced the general idea of optimizing some function, say, Φ, of a
weighted graph over all nonnegative edge weights that add to m, i.e., with average
edge weight 1. He refers to the optimal value of this problem as the absolute Φ of the
graph. For example, if Φ is the second smallest eigenvalue of the associated Laplacian,
which is called the algebraic connectivity of a (weighted) graph, then the absolute
algebraic connectivity (of a graph) is the maximum value of the second eigenvalue,
optimized over all weights on the edges that sum to m. Our ERMP is thus a special
case of Fiedler’s construction: (1/m)R!

tot is what Fielder would call the absolute total
effective resistance of the graph.
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In this paper, we will show that problem (2) is a convex optimization problem,
which can be formulated as a semidefinite program (SDP) [7]. This has several im-
plications, both practical and theoretical. One practical consequence is that we can
solve the ERMP efficiently. On the theoretical side, convexity of the ERMP allows
us to form necessary and sufficient optimality conditions and several associated dual
problems (with zero duality gap). Feasible points in these dual problems give us lower
bounds on R!

tot; in fact, we obtain a lower bound on R!
tot given any feasible allocation

of conductances. This gives us an easily computable upper bound on the suboptimal-
ity, i.e., a duality gap, given a conductance allocation g. We use this duality gap in a
simple interior-point algorithm for solving the ERMP.

We describe several families of graphs for which the solution to (2) can be found
analytically, by exploiting symmetry or other structure. These include trees, wheels,
and the barbell graph Kn−Kn. For the barbell graph, we show that the ratio of R!

tot
to Rtot obtained with uniform edge weights converges to zero as the size of the graph
increases. Thus, the total effective resistance of a graph, with optimized edge weights,
can be unboundedly better (i.e., smaller) than the total effective resistance of a graph
with uniform allocation of weights to the edges.

This paper is organized as follows. In section 2, we give a formal definition of the
effective resistance, derive a number of formulas and expressions for Rij , Rtot, and the
first and second derivatives of Rtot, and establish several important properties, such
as convexity of Rij and Rtot as a function of the edge conductances. In section 3, we
give several interpretations of Rij , Rtot, and the ERMP.

We study the ERMP in section 4, giving the SDP formulation, (necessary and
sufficient) optimality conditions, two dual problems, and a simple but effective custom
interior-point method for solving it. In section 5, we study some families of graphs for
which the ERMP can be solved analytically. In section 6, we show that of all graphs
on n nodes, the optimal value of the ERMP is smallest for the complete graph and
largest for the path. We give some numerical examples in section 7 and describe some
extensions in section 8.

1.1. Related Problems. The ERMP is related to several other convex optimiza-
tion problems that involve choice of some weights on the edges of a graph. One such
problem (already mentioned above) is to assign nonnegative weights, which add to
1, to the edges of a graph so as to maximize the second smallest eigenvalue of the
Laplacian:

maximize λ2(L)
subject to 1T g = 1, g ≥ 0.

(3)

Here L denotes the Laplacian of the weighted graph. This problem has been studied
in different contexts. The eigenvalue λ2(L) is related to the mixing rate of the Markov
process with edge transition rates given by the edge weights. In [28], the weights g are
optimized to obtain the fastest mixing Markov process on the given graph. Problem
(3) has also been studied in the context of algebraic connectivity [14]. The algebraic
connectivity is the second smallest eigenvalue of the Laplacian matrix L of a graph
(with unit edge weights) and is a measure of how well connected the graph is. Fiedler
defined the absolute algebraic connectivity of a graph as the maximum value of λ2(L)
over all nonnegative edge weights that add up to m, i.e., 1/m times the optimal value
of (3). The problem of finding the absolute algebraic connectivity of a graph was
discussed in [15, 16], and an analytical solution was presented for tree graphs.
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Other convex problems involving edge weights on graphs include the problem of
finding the fastest mixing Markov chain on a given graph [6, 19, 28], the problem of
finding the edge weights (which can be negative) that give the fastest convergence
in an averaging network [30], and the problem of finding edge weights that give the
smallest least mean-square (LMS) consensus error [31]. Convex optimization can also
be used to obtain bounds on various quantities over a family of graphs; see [18].

In [8], Boyd et al. considered the sizing of the wires in the power supply network of
an integrated circuit, with unknown load currents modeled stochastically. This turns
out to be closely related to our ERMP, with the wire segment widths proportional to
the edge weights.

Some papers on various aspects of resistance distance include [22, 32, 2, 23, 24].

2. The Effective Resistance.

2.1. Definition. Suppose edge l connects nodes i and j. We define al ∈ Rn as
(al)i = 1, (al)j = −1, and all other entries 0. The conductance matrix (or weighted
Laplacian) of the network is defined as

G =
m

∑

l=1

glala
T
l = A diag(g)AT ,

where diag(g) ∈ Rm×m is the diagonal matrix formed from g and A ∈ Rn×m is the
incidence matrix of the graph,

A = [a1 · · · am].

Since gl ≥ 0, G is positive semidefinite, which we write as G $ 0. (The symbol $
denotes denotes matrix inequality between symmetric matrices: P $ Q means that
P − Q is positive semidefinite.) The matrix G satisfies G1 = 0, since aT

l 1 = 0 for
each edge l. Thus, G has smallest eigenvalue 0, corresponding to the eigenvector 1.

Throughout this paper we make the following assumption about the edge weights:

The subgraph of edges with positive edge weights is connected.(4)

(If this is not the case, the effective resistance between any pair of nodes not connected
by a path of edges with positive conductance is infinite, and many of our formulas are
no longer valid.)

With this assumption, all other eigenvalues of G are positive. We denote the
eigenvalues of G as

0 < λ2 ≤ · · · ≤ λn.

The nullspace of G is one-dimensional, the line along 1; its range has codimension 1,
and is given by 1⊥ (i.e., all vectors v with 1T v = 0).

Let G(k) be the submatrix obtained by deleting the kth row and column of G.
Our assumption (4) implies that each G(k) is nonsingular (see, e.g., [10]). We will
refer to G(k) as the reduced conductance matrix (obtained by grounding node k).

Now we can define the effective resistance Rij between a pair of nodes i and j.
Let v be a solution of the equation

Gv = ei − ej ,

where ei denotes the ith unit vector, with 1 in the ith position and 0 elsewhere. This
equation has a solution since ei − ej is in the range of G. We define Rij as

Rij = vi − vj .
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This is well defined; all solutions of Gv = ei − ej give the same value of vi − vj .
(This follows since the difference of any two solutions has the form α1 for some α ∈ R.)
We define the effective resistance matrix R ∈ Rn×n as the matrix with i, j entry Rij .
The effective resistance matrix is evidently symmetric and has diagonal entries zero,
since Rii = 0.

2.2. Effective Resistance in an Electrical Network. The term effective resis-
tance (as well as several other terms used here) comes from electrical network analy-
sis. We consider an electrical network with conductance gl on branch (or edge) l. Let
v ∈ Rn denote the vector of node potentials, and suppose a current Ji is injected into
node i. The sum of the currents injected into the network must be zero in order for
Kirchhoff’s current law to hold, i.e., we must have 1T J = 0. The injected currents
and node potentials are related by Gv = J . There are many solutions of this equation,
but all differ by a constant vector. Thus, the potential difference between a pair of
nodes is always well defined.

One way to fix the node potentials is to assign a potential zero to some node, say,
the kth node. This corresponds to grounding the kth node. When this is done, the
circuit equations are given by G(k)v(k) = J (k), where G(k) is the reduced conductance
matrix, v(k) is the reduced potential vector, obtained by deleting the kth entry of
v (which is zero), and J (k) is the reduced current vector, obtained by deleting the
kth entry of J . In this formulation, J (k) has no restrictions; alternatively, we can
say that Jk is implicitly defined as Jk = −1T J (k). From our assumption (4), G(k)

is nonsingular, so there is a unique reduced potential vector v(k) for any vector of
injected currents J (k).

Now consider the specific case when the external current is J = ei − ej , which
corresponds to a one ampere current source connected from node j to node i. Any
solution v of Gv = ei − ej is a valid vector of node potentials; all of these differ
by a constant. The difference vi − vj is the same for all valid node potentials and
is the voltage developed across terminals i and j. This voltage is Rij , the effective
resistance between nodes i and j. (The effective resistance between two nodes of a
circuit is defined as the ratio of voltage across the nodes to the current flow injected
into them.)

The effective resistance Rij is the total power dissipated in the resistor network
when J = ei − ej , i.e., a one ampere current source is applied between nodes i and
j. This can be shown directly or by a power conservation argument. The voltage
developed across nodes i and j is Rij (by definition), so the power supplied by the
current source, which is current times voltage, is Rij . The power supplied by the
external current source must equal the total power dissipated in the resistors of the
network, so the latter is also Rij .

2.3. Effective Resistance for a Tree. We first consider the case when N is a
tree. In this case the effective resistance between nodes i and j can be expressed as

Rij =
∑ 1

gl
,

where the sum is over edges that lie on the (unique) path between i and j. Therefore,
the total effective resistance for a tree is given by

Rtot =
m

∑

l=1

bl

gl
,(5)
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where bl is the number of paths that contain edge l. We can express bl in terms of the
number of nodes on either side of edge l as bl = nl(n − nl), where nl is the number
of nodes on one side of edge l, including its endpoint. (The number of nodes on the
other side is n − nl.)

2.4. Some Formulas for Effective Resistance. In this section we derive several
formulas for the effective resistance between a pair of nodes in a general graph as
well as for the total effective resistance. Our first expressions involve the reduced
conductance matrix, which we write here as G̃ (since the particular node that is
grounded will not matter). We form the reduced conductance matrix G̃ by removing,
say, the kth row and column of G. Let ṽ, ẽi, and ẽj be, respectively, the vectors v,
ei, and ej , each with the kth component removed. If Gv = ei − ej , then we have
G̃ṽ = ẽi − ẽj . This equation has a unique solution, ṽ = G̃−1(ẽi − ẽj). The effective
resistance between nodes i and j is given by vi − vj = ṽi − ṽj , i.e.,

Rij = (ẽi − ẽj)T G̃−1(ẽi − ẽj).(6)

(This is independent of the choice of node grounded, i.e., which row and column are
removed.) When neither i nor j is k, the node that is grounded, we can write (6) as

Rij = (G̃−1)ii + (G̃−1)jj − 2(G̃−1)ij .

If j is k, the node that is grounded, then ẽj = 0, so (6) becomes

Rij = (G̃−1)ii.

We can also write the effective resistance Rij in terms of the pseudoinverse G† of
G. We have

G†G = I − 11T /n,

which is the projection matrix onto the range of G. (Here we use the simpler notation
11T /n to mean (1/n)11T .) Using this it can verified that

G† = (G + 11T /n)−1 − 11T /n.(7)

The following formula gives Rij in terms of G† (see, e.g., [23]):

Rij = (ei − ej)T G†(ei − ej) = (G†)ii + (G†)jj − 2(G†)ij .(8)

To see this, multiply Gv = ei −ej on the left by G† to get (I −11T /n)v = G†(ei −ej),
so

(ei − ej)T G†(ei − ej) = (ei − ej)T v = vi − vj

(since ei − ej ⊥ 1). From (7), we get another formula for the effective resistance,

Rij = (ei − ej)T (G + 11T /n)−1(ei − ej).(9)

We can derive several formulas for the effective resistance matrix R, using (6) and
(8). From (8), we see that

R = 1diag(G†)T + diag(G†)1T − 2G†,(10)

where diag(G†) ∈ Rn is the vector consisting of the diagonal entries of G†.
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Using (7), this can be rewritten as

R = 1diag((G + 11T /n)−1)T + diag((G + 11T /n)−1)1T − 2(G + 11T /n)−1.(11)

We can also derive a matrix expression for R in terms of the reduced conductance
matrix G̃. Suppose G̃ is formed by removing the kth row and column from G. Form
a matrix H ∈ Rn×n from G̃−1 by adding a kth row and column with all entries zero.
Then, using (6), R can be written as

R = 1diag(H)T + diag(H)1T − 2H.(12)

2.5. Some Formulas for Total Effective Resistance. In this section we give
several general formulas for the total effective resistance,

Rtot =
∑

i<j

Rij = (1/2)1T R1.

From (10) we get

Rtot = (1/2)1T 1diag(G†)T 1 + (1/2)1T diag(G†)1T 1 − 1T G†1
= nTrG†(13)
= nTr(G + 11T /n)−1 − n,(14)

using G†1 = 0 to get the second equality and (7) to get the third equality. (TrZ
denotes the trace of a square matrix Z.)

We can use (13) to get a formula for Rtot in terms of the eigenvalues of G. The
eigenvalues of G† are 1/λi for i = 2, . . . , n and 0. So we can rewrite (13) as

Rtot = n
n

∑

i=2

1
λi

.(15)

This expression for the total effective resistance can be found in [1, section 3.4].
The total effective resistance can also be expressed in terms of the reduced con-

ductance matrix G̃. Multiplying (12) on the left and right by 1T and 1 and dividing
by 2, we have

Rtot = nTr G̃−1 − 1T G̃−11 = nTr(I − 11T /n)G̃−1.(16)

(Note that G̃ ∈ R(n−1)×(n−1), so the vectors denoted 1 in this formula have dimension
n − 1.)

The total effective resistance can also be written in terms of an integral:

Rtot = nTr
∫ ∞

0
(e−tG − 11T /n) dt.(17)

This can be seen as follows. Let n−1/21, v2, . . . , vn be an orthonormal set of eigen-
vectors of G, corresponding to the eigenvalues λ1 = 0 < λ2 ≤ · · · ≤ λn, respectively.
The matrix e−tG has the same eigenvectors, with corresponding eigenvalues 1 and
e−λit for i = 2, . . . , n. Therefore we have

nTr
∫ ∞

0

(

e−tG − 11T /n
)

dt = nTr
∫ ∞

0

n
∑

i=2

e−λitviv
T
i dt

= n
n

∑

i=2

∫ ∞

0
e−λit dt = n

n
∑

i=2

1
λi

,

using Tr vivT
i = ‖vi‖2 = 1 to get the second equality.
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2.6. Basic Properties. The effective resistance Rij and the total effective resis-
tance Rtot are rational functions of g. This can be seen from (6), since the inverse
of a matrix is a rational function of the matrix and Rij is a linear function of G̃−1.
They are also homogeneous with degree −1: if ĝ = cg, where c > 0, then R̂ij = Rij/c

and R̂tot = Rtot/c.
The effective resistance Rij with i (= j is always positive: the matrix G̃−1 is

positive definite (since G̃ ) 0), so from (6), Rij > 0 when i (= j. Nonnegativity of
Rij can also be seen by noting that G̃ is an M -matrix. The inverse of an M -matrix
is elementwise nonnegative [21], and since Rij is the (i, i)th entry of (G(j))−1, it is
nonnegative as well.

The effective resistance also satisfies the triangle inequality (see, e.g., [23]),

Rik ≤ Rij + Rjk.(18)

Therefore, the effective resistance defines a metric on the graph, called the resistance
distance [23]. It also satisfies the weaker triangle inequality, R1/2

ik ≤ R1/2
ij + R1/2

jk ,
which arises in Euclidean distance problems. (This is discussed in section 2.8.)

The effective resistance Rij is a monotone decreasing function of g, i.e., if g ≤ ĝ,
then Rij ≥ R̂ij . To show this, suppose 0 ≤ g ≤ ĝ and let G and G̃ denote the
associated conductance matrices. Evidently we have G + 11T /n * Ĝ + 11T /n, so
(G + 11T /n)−1 $ (Ĝ + 11T /n)−1. From (9),

Rij = (ei − ej)T (G + 11T /n)−1(ei − ej) ≥ (ei − ej)T (Ĝ + 11T /n)−1(ei − ej) = R̂ij .

2.7. Convexity. The effective resistance Rij is a convex function of g: for g, ĝ ≥ 0
(both satisfying the basic assumption (4)) and any θ ∈ [0, 1], we have

Rij(θg + (1 − θ)ĝ) ≤ θRij(g) + (1 − θ)Rij(ĝ).

To show this, we first observe that f(Y ) = cT Y −1c, where Y = Y T ∈ Rn×n and
c ∈ Rn, is a convex function of Y for Y ) 0 (see, e.g., [7, section 3.1.7]). Since
G + 11T /n is an affine function of g, Rij is a convex function of g. It follows that
Rtot is also convex, since it is a sum of convex functions.

A related result was shown by Shannon and Hagelberger in [26]: if rl = 1/gl is
the value of the resistor on edge l, then Rij is a concave function of the vector r. Note
that the convexity of Rij as a function of g does not follow immediately (for example,
using simple composition rules) from this result.

The total effective resistance is, in fact, a strictly convex function of g: for g, ĝ ≥ 0
(both satisfying the basic assumption (4)), with g (= ĝ, and any θ ∈ (0, 1), we have

Rtot(θg + (1 − θ)ĝ) < θRtot(g) + (1 − θ)Rtot(ĝ).

To establish this, we first show that TrX−1 is a strictly convex function of X for X
symmetric and positive definite. Its second order Taylor approximation is

Tr(X +∆)−1 ≈ TrX−1 − TrX−1∆X−1 + TrX−1∆X−1∆X−1,

where ∆ = ∆T . The second order term can be expressed as

TrX−1∆X−1∆X−1 = ‖X−1∆X−1/2‖2
F ,

where ‖ ·‖ F denotes the Frobenius norm. This second order term vanishes only if
∆ = 0 (since X−1 and X−1/2 are both invertible), i.e., it is a positive definite quadratic
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function of ∆. This shows that TrX−1 is a strictly convex function of X = XT ) 0.
Since the affine mapping from g to G + 11T /n is one-to-one, we conclude that

Rtot = nTr(G + 11T /n)−1 − n

is a strictly convex function of g.
We note that the effective resistance Rij need not be a strictly convex function

of g. As a simple example, consider a ring with 4 nodes and consider the effective
resistance between two nonadjacent nodes. There are only two paths between these
nodes, one passing through edges with conductance g1 and g2 (say), and the other
path passing through edges with conductance g3 and g4. This resistance between the
nodes can be expressed as

R =
(1/g1 + 1/g2)(1/g3 + 1/g4)
1/g1 + 1/g2 + 1/g3 + 1/g4

.

(This follows from direct calculation or from the formulas for the resistance of series
and parallel connections of resistors.) Now consider the two edge conductance vectors
g = (1, 1, 3, 3) and ĝ = (3, 3, 1, 1). Each gives resistance R = 1/2. With edge conduc-
tance (g + ĝ)/2 = (2, 2, 2, 2), we also have resistance R = 1/2, which shows that R is
not strictly convex.

The convexity of Rtot can also be seen from the theory of spectral functions (i.e.,
a symmetric function of the eigenvalues of a symmetric matrix). From (15), we see
that Rtot is a spectral function of G associated with the closed convex function

f(y) =
{

∑n
i=2 1/[y]i, [y]1 = 0, [y]i > 0, i = 2, . . . , n,

+∞, otherwise,

where [y]i denotes the ith smallest entry of the vector y. A spectral function f(λ) is
closed and convex if and only if f is closed and convex [4], so Rtot is a convex function
of G and therefore also of g.

2.8. Euclidean Distance Matrix. A symmetric matrix D ∈ Rn×n is a Euclidean
distance matrix if there is a set of n vectors x1, . . . , xn ∈ Rn such that Dij = ‖xi −
xj‖2. A classical result is that a matrix D is a Euclidean distance matrix if and only
if it has nonnegative elements, zero diagonal elements, and is negative semidefinite on
1⊥, i.e., xT Dx ≤ 0 if 1T x = 0 [20].

The effective resistance matrix R is a Euclidean distance matrix: it has zero
diagonal, nonnegative entries and, from (10), for any x satisfying 1T x = 0,

xT Rx = xT (1diag(G†)T + diag(G†)1T − 2G†)x = −2xT G†x ≤ 0

since G† $ 0. In fact we can easily construct a set of vectors x1, . . . , xn for which

‖xi − xj‖2 = Rij .(19)

Let xi be the columns of (G†)1/2, i.e.,

[x1 · · ·xn] = (G†)1/2.

Then the Gram matrix associated with these vectors is G†:

xT
i xj = (G†)ij .
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Expanding the left-hand side of (19) gives

‖xi − xj‖2 = xT
i xi + xT

j xj − 2xT
i xj = (G†)ii + (G†)jj − 2(G†)ij ,

which is Rij , by (8). (See [7, section 8.3.3].) A relation between R and Euclidean
distance matrices is also discussed in [17].

Since R is a Euclidean distance matrix, the square roots of the entries of R are
Euclidean distances, i.e., they satisfy the triangle inequality

R1/2
ik ≤ R1/2

ij + R1/2
jk

(which also follows directly from the stronger triangle inequality (18)). We refer to
R1/2

ij as the Euclidean distance between nodes i and j. Thus, Rtot is the sum of the
squares of the Euclidean distances between all distinct pairs of nodes.

2.9. Gradient and Hessian. In this section we work out some formulas for the
gradient and Hessian of Rtot with respect to g. (A similar approach can be used to find
the derivatives of Rij with respect to g, but we will not need these in what follows.)
We will use the following fact. Suppose the invertible symmetric matrix X(t) is a
differentiable function of the parameter t ∈ R. Then we have [7, section A.4.1]

∂X−1

∂t
= −X−1 ∂X

∂t
X−1.

Using this formula and Rtot = nTr(G + 11T /n)−1 − n, we have

∂Rtot

∂gl
= −nTr(G + 11T /n)−1 ∂G

∂gl
(G + 11T /n)−1

= −nTr(G + 11T /n)−1ala
T
l (G + 11T /n)−1

= −n‖(G + 11T /n)−1al‖2.(20)

We can express the gradient as

∇Rtot = −n diag(AT (G + 11T /n)−2A).

The gradient can also be expressed in terms of a reduced conductance matrix. Let
G̃ = G(k) be a reduced conductance matrix with node k grounded, and let ãl ∈ Rn−1

be the corresponding reduced edge vectors and Ã the corresponding graph incidence
matrix. Using Rtot = nTr G̃−1(I − 11T /n), we have

∂Rtot

∂gl
= −nTr(I − 11T /n)G̃−1 ∂G̃

∂gl
G̃−1 = −nTr(I − 11T /n)G̃−1ãlã

T
l G̃−1

(here I − 11T /n ∈ R(n−1)×(n−1)). Thus, the gradient can be written as

∇Rtot = −n diag(ÃT G̃−1(I − 11T /n)G̃−1Ã).

For future reference, we note the formula

∇RT
totg = −Rtot,(21)

which holds since Rtot is a homogeneous function of g of degree −1. It is easily
verified by taking the derivative with respect to α of Rtot(αg) = Rtot(g)/α, evaluated
at α = 1.
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We now derive the second derivative or Hessian matrix of Rtot. From (20), we
have

∂2

∂gl∂gk
Rtot = −n

∂

∂gk
‖(G + 11T /n)−1al‖2(22)

= 2naT
l (G + 11T /n)−2akaT

k (G + 11T /n)−1al.(23)

We can express the Hessian of Rtot as

∇2Rtot = 2n
(

AT (G + 11T /n)−2A
)

◦
(

AT (G + 11T /n)−1A
)

,

where ◦ denotes the Hadamard (elementwise) product. A similar expression can be
derived using reduced matrices:

∇2Rtot = 2n(ÃT G̃−1(I − 11T /n)G̃−1Ã) ◦ (ÃT G̃−1Ã).(24)

Suppose edge l connects nodes i and j. From the formulas above, and using
Rij = aT

l (G + 11T /n)−1al, we have

∂2Rtot

∂2gl
= −2Rij

∂Rtot

∂gl
.

3. Interpretations.

3.1. Average Commute Time. The effective resistance between a pair of nodes
i and j is related to the commute time between i and j for the Markov chain defined by
the conductances g [9, 11]. Let M be a Markov chain on the graph N with transition
probabilities determined by the conductances,

Pij =
gij

∑

l∼(i,k) gl
,

where gij is the conductance across edge (i, j) and l ∼ (i, k) means that edge l lies
between nodes i and k. This Markov chain is reversible, with stationary distribution

πi =

∑

l∼(i,j) gl
∑m

l=1 gl
.

The hitting time Hij is the (random) time taken to reach node j for the first time
starting from node i. The commute time Cij is the time it takes to return to node
i for the first time after starting from i and passing through node j. The following
well-known result relates commute times and effective resistance (see, for example, [1,
section 3.3]):

ECij = 2(1T g)Rij ,

where E denotes expected value. That is, the effective resistance between i and j is
proportional to the expected commute time between i and j.

Therefore, the total effective resistance is proportional to C, the expected com-
mute time averaged over all pairs of nodes:

C =
4(1T g)

n(n − 1)
Rtot.
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Since ECij = EHij +EHji, Rtot is also proportional to H, the expected hitting time
averaged over all pairs of nodes:

H =
2(1T g)

n(n − 1)
Rtot.

In the context of Markov chains, the ERMP (2) is the problem of choosing edge
weights on a graph so as to minimize its average expected commute or hitting time.

3.2. Power Dissipation in a Resistor Network. The total effective resistance is
related to the average power dissipated in a resistor network with random injected
currents. Suppose a random current J ∈ Rn is injected into the network. The current
must satisfy 1T J = 0, since the total current entering the network must be zero. We
assume that

EJ = 0, EJJT = I − 11T /n.

Roughly speaking, this means J is a random current vector, with covariance matrix
I on 1⊥.

The power dissipated in the resistor network with injected current vector J is
JT G†J . The expected dissipated power is

EJT G†J = TrG† EJJT = TrG† =
1
n

Rtot,

where the second equality follows from G†1 = 0.
Thus, the total effective resistance is proportional to the average power dissipated

in the network when the injected current is random, with mean 0 and covariance
I − 11T /n. A network with small Rtot is one which dissipates little power under
random current excitation; large Rtot means the average power dissipation is large.

The ERMP (2) is the problem of allocating a total conductance of 1 to the
branches of a resistor network so as to minimize the average power dissipated un-
der random current excitation. (See, e.g., [8].)

We can also give an interpretation of the gradient ∇Rtot in the context of a resistor
network. With random current excitation J , with EJ = 0, EJJT = I − 11T /n, the
partial derivative ∂Rtot/∂gl is proportional to the mean-square voltage across edge
l. This can be seen from (20) as follows. The voltage vl across edge l with current
excitation J is aT

l G†J = aT
l (G + 11T /n)−1J , since aT

l 1 = 0. The expected value of
the squared voltage is

E(aT
l (G + 11T /n)−1J)2 = aT

l (G + 11T /n)−1 EJJT (G + 11T /n)−1al

= aT
l (G + 11T /n)−1(I − 11T /n)(G + 11T /n)−1al

= aT
l (G + 11T /n)−2al,

where the last equality follows since (G + 11T /n)−11 = 1 and 1T al = 0. Comparing
this with (20), we see that

∂Rtot

∂gl
= −nE v2

l .(25)

The gradient ∇Rtot is equal to −n times the vector of mean-square voltages appearing
across the edges.
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3.3. Elmore Delay in an RC Circuit. We consider again a resistor network with
branch (electrical) conductances given by gl. To this network we add a separate
ground node and a unit capacitance between every other node and the ground node.
The vector of node voltages (with respect to the ground node) in this resistor-capacitor
(RC) circuit evolves according to v̇ = −Gv. This has solution v(t) = e−tGv(0). Since
e−tG has largest eigenvalue 1 associated with the eigenvector 1, with other eigenvalues
e−λit for i = 2, . . . , n, we see that v(t) converges to the vector 11T v(0)/n. In other
words, the voltage (or, equivalently, charge) equilibrates itself across the nodes in the
circuit.

Suppose we start with the initial voltage v(0) = ek, i.e., one volt on node k
with zero voltage on all other nodes. It can be shown that the voltage at node k
monotonically decreases to the average value, 1/n. The Elmore delay at node k is
defined as

Tk =
∫ ∞

0
(vk(t) − 1/n) dt

(see, for example, [12, 29]). The Elmore delay Tk gives a measure of the speed at
which charge starting at node k equilibrates.

The average Elmore delay, over all nodes, is

1
n

n
∑

k=1

Tk =
1
n

n
∑

k=1

eT
k

∫ ∞

0
(e−tG − 11T /n)ek dt

=
1
n

Tr
(

∫ ∞

0
(e−tG − 11T /n) dt

)

=
1
n2 Rtot,

where the last equality follows from (17). The total effective resistance of the network
is thus proportional to the sum of the Elmore delays at each node in the RC circuit.

The ERMP (2) is the problem of allocating a total conductance of 1 to the resistor
branches of an RC circuit so as to minimize the average Elmore delay of the nodes.

3.4. Total Time Constant of an Averaging Network. We can interpret Rtot
in terms of the time constants in an averaging network. We consider the dynamical
system ẋ = −Gx, where G is the conductance matrix. This system carries out
(asymptotic) averaging: e−tG is a doubly stochastic matrix, which converges to 11T /n
as t → ∞, so x(t) = e−tGx(0) converges to 11T x(0)/n.

The eigenvalues λ2, . . . ,λn of G determine the rate at which the averaging takes
place. The eigenvectors v2, . . . , vn are the modes of the system, and the associated
time constants are given by Tk = 1/λk. (This gives the time for mode k to decay
by a factor e.) Therefore, Rtot = n

∑n
k=2 Tk is proportional to the sum of the time

constants of the averaging system.

3.5. A-Optimal Experiment Design. The ERMP can be interpreted as a certain
type of optimal experiment design problem. The goal is to estimate a parameter vector
x ∈ Rn from noisy linear measurements

yi = vT
i x + wi, i = 1, . . . , K,

where each vi can be any of the vectors a1, . . . , am and wi are independent random
(noise) variables with zero mean and unit variance. Thus, each measurement consists



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

50 ARPITA GHOSH, STEPHEN BOYD, AND AMIN SABERI

of measuring a difference between two components of x, corresponding to some edge
of our graph, with some additive noise. With these measurements of differences of
components, we can only estimate x up to some additive constant; the parameters x
and x+α1 for any α ∈ R produce exactly the same measurements. We will therefore
assume that the parameter to be estimated satisfies 1T x = 0.

Now suppose a total of kl measurements are made using al for l = 1, . . . , m, so
we have

∑m
l=1 kl = K. The minimum variance unbiased estimate of x, given the

measurements, is

x̂ =

(

K
∑

i=1

viv
T
i

)† (

K
∑

i=1

vT
i yi

)

=

(

m
∑

l=1

klala
T
l

)† (

m
∑

l=1

kla
T
l y

)

.

The associated estimation error e = x̂ − x has zero mean and covariance matrix

Σerr =

(

m
∑

l=1

klala
T
l

)†

.

(There is no estimation error in the direction 1, since we have assumed that 1T x = 0,
and we always have 1T x̂ = 0.) The goal of experiment design is to choose the integers
k1, . . . , kl, subject to

∑

l kl = K, to make the estimation error covariance matrix Σerr
small. There are several ways to define “small,” which yield different experiment
design problems. In A-optimal experiment design, the objective is the trace of Σerr.
This is proportional to the sum of the squares of the semiaxis lengths of the confidence
ellipsoid associated with the estimate x̂.

We now change variables to θl = kl/K, which is the fraction of the total number
of experiments (i.e., K) that are carried out using v = al. The variables θl are
nonnegative and add to 1, and they must be integer multiples of 1/K. If K is large,
we can ignore the last requirement and take the variables θl to be real. This yields
the (relaxed) A-optimal experiment design problem [25]

minimize (1/K)Tr(
∑m

l=1 θlalaT
l )†

subject to
∑m

l=1 θl = 1, θl ≥ 0.

This is a convex optimization problem, with variable θ ∈ Rm. (See [7, section 7.5]
and its references for more on experiment design problems.)

Identifying θl with gl, we see that the A-optimal experiment design problem
above is the same as our ERMP (up to scale factor in the objective). Thus, we can
interpret the ERMP as follows. We have real numbers x1, . . . , xn at the nodes of
our graph, which have zero sum. Each edge in our graph corresponds to a possible
measurement we can make, which gives the difference in its adjacent node values, plus
a noise. We make a large number of these measurements, in order to estimate x. The
problem is to choose the fraction of the experiments that should be devoted to each
edge measurement. Using the trace of the error covariance matrix as our measure of
estimation quality, the optimal fractions are exactly the optimal conductances in the
ERMP.

3.6. Euclidean Variance. In section 2.8 we observed that R is a Euclidean dis-
tance matrix and interpreted R1/2

ij as the Euclidean distance between nodes i and j.
The total effective resistance Rtot is the sum of the squares of the Euclidean distances
between all distinct pairs of nodes. Thus, the ERMP is the problem of choosing edge
weights, which add to 1, that makes the graph small, i.e., minimizes the sum of the
squares of the Euclidean distances between all distinct pairs of nodes.
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We can give another, related interpretation of the objective. Since the coordinates
of the n points x1, . . . , xn are the columns of (G†)1/2, the coordinates satisfy

∑n
i=1 xi =

0, i.e., they have zero mean. The total effective resistance is therefore the same as

Rtot =
∑

i<j

‖xi − xj‖2 = n
n

∑

i=1

‖xi‖2,

which is n times the variance of the configuration of n points. Thus, the ERMP is
to choose edge weights, which add to 1, to minimize the variance of the associated
Euclidean configuration. (We note that the variance is the same for any configuration
of points that satisfy ‖xi − xj‖2 = Rij .)

4. Minimizing Total Effective Resistance. In this section we study the ERMP

minimize Rtot
subject to 1T g = 1, g ≥ 0,

(26)

in detail. This is a convex optimization problem, since the objective is a convex
function of g and the constraint functions are linear. The problem is clearly feasible,
since g = (1/m)1, the uniform allocation of conductance to edges, is feasible. Since
the objective function is strictly convex, the solution of (26) is unique. We denote the
unique optimal point as g! and the associated value of the objective as R!

tot.

4.1. SDP Formulation. The ERMP (26) can be formulated as an SDP,

minimize nTrY
subject to 1T g = 1, g ≥ 0,

[

G + 11T /n I
I Y

]

$ 0,

(27)

where G =
∑m

l=1 glalaT
l . The variables are the conductances g ∈ Rm and the slack

symmetric matrix Y ∈ Rn×n. To see the equivalence, we note that whenever G +
11T /n ) 0 (which is guaranteed whenever the basic assumption (4) holds),

[

G + 11T /n I
I Y

]

$ 0 ⇐⇒ Y $ (G + 11T /n)−1.

To minimize the SDP objective nTrY , subject to this constraint, with G fixed, we
simply take Y = (G + 11T /n)−1, so the objective of the SDP becomes Rtot + n.

4.2. Optimality Conditions. The optimal conductance g! satisfies

1T g = 1, g ≥ 0, ∇Rtot + Rtot1 ≥ 0,(28)

where Rtot is the total effective resistance with g. Conversely, if g is any vector
of conductances that satisfies (28), then it is optimal, i.e., g = g!. The first two
conditions in (28) require that g be feasible.

These optimality conditions can be derived as follows. Since the ERMP is a
convex problem with differentiable objective, a necessary and sufficient condition for
optimality of a feasible g is

∇RT
tot(ĝ − g) ≥ 0 for all ĝ with 1T ĝ = 1, ĝ ≥ 0
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(see, e.g., [7, section 4.2.3]). This is the same as

∇RT
tot(el − g) ≥ 0, l = 1, . . . , m.

Since Rtot is a homogeneous function of g of degree −1, we have ∇RT
totg = −Rtot

(see (21)), so the condition above can be written as

∂Rtot

∂gl
+ Rtot ≥ 0, l = 1, . . . , m,(29)

which is precisely the third condition in (28). This third condition can be expressed
as

∂Rtot

∂gl
+Rtot = n

(

Tr(G + 11T /n)−1 − 1 − ‖(G + 11T /n)−1al‖2) ≥ 0, l = 1, . . . , m.

From the optimality conditions (28) we can derive a complementary slackness
condition:

gl

(

∂Rtot

∂gl
+ Rtot

)

= 0, l = 1, . . . , m.(30)

This means that for each edge, we have either gl = 0 or ∂Rtot/∂gl + Rtot = 0. To
establish the complementarity condition, we note that

gT (∇Rtot + Rtot1) = 0,

since gT ∇Rtot = −Rtot and gT Rtot1 = Rtot. If g satisfies (28), then this states
that the inner product of two nonnegative vectors, g and ∇Rtot + Rtot1, is zero; it
follows that the products of the corresponding entries are zero. This is exactly the
complementarity condition above.

We can give the optimality conditions a simple interpretation in the context of
a circuit driven by a random current, as described in section 3.2. We suppose the
circuit is driven by a random current excitation J with zero mean and covariance
EJJT = I −11T /n. By (25), we have ∂Rtot/∂gl = −nE v2

l , where vl is the (random)
voltage appearing across edge l. The optimality condition is that g is feasible, and we
have

E v2
l ≤ (1/n)Rtot, l = 1, . . . , m.

Thus, the conductances are optimal when the mean-square voltage across each edge
is less than or equal to (1/n)Rtot. Using the complementarity condition (30), we can
be a bit more specific: each edge that has positive conductance allocated to it must
have a mean-square voltage equal to (1/n)Rtot; any edge with zero conductance must
have a mean-square voltage no more than (1/n)Rtot.

4.3. The Dual Problem. In this section we derive the Lagrange dual problem
for the ERMP (26), as well as some interesting variations on it. We start by writing
the ERMP as

minimize nTrX−1 − n
subject to X =

∑m
l=1 glalaT

l + 11T /n,
1T g = 1, g ≥ 0,

(31)
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with variables g ∈ Rm and X = XT ∈ Rn×n. Associating dual variables Z = ZT ∈
Rn×n, ν ∈ R with the equality constraints, and λ ∈ Rm with the nonnegativity
constraint g ≥ 0, the Lagrangian is

L(X, g, Z, ν,λ) = nTrX−1−n+TrZ

(

X −
m

∑

l=1

glala
T
l − 11T /n

)

+ν(1T g−1)−λT g.

The dual function is

h(Z, ν,λ) = inf
X'0, g

L(X, g, Z, ν,λ)

= inf
X'0

Tr(nX−1 + ZX) + inf
g

(

m
∑

l=1

gl(−aT
l Zal + ν − λl)

)

− n − ν − (1/n)1T Z1T

=
{

−ν − (1/n)1T Z1 + 2Tr(nZ)1/2 − n if − aT
l Zal + ν = λl, l = 1, . . . , m, Z $ 0,

∞, otherwise.

To justify the last line, we note that Tr(nX−1+ZX) is unbounded below, as a function
of X, unless Z $ 0; when Z ) 0, the unique X that minimizes it is X = (Z/n)−1/2,
so it has the value

Tr(nX−1 + ZX) = Tr(n(Z/n)1/2 + Z(Z/n)−1/2) = 2Tr(nZ)1/2.

When Z is positive semidefinite but not positive definite, we get the same minimal
value, but it is not achieved by any X. (This calculation is equivalent to working out
the conjugate of the function TrU−1 for U ) 0, which is −2Tr(−V )1/2 with domain
V * 0; see, e.g., [7, Ex. 3.37].)

The Lagrange dual problem is

maximize h(Z, ν,λ)
subject to λ ≥ 0.

Using the explicit formula for h derived above and eliminating λ, which serves as a
slack variable, we obtain the dual problem

maximize −ν − (1/n)1T Z1 + 2Tr(nZ)1/2 − n
subject to aT

l Zal ≤ ν, l = 1, . . . , m,
Z $ 0.

(32)

This problem is another convex optimization problem with variables Z = ZT ∈ Rn×n

and ν ∈ R. The scalar variable ν could be eliminated, since its optimal value is
evidently ν = maxl aT

l Zal.
Since the ERMP is convex, has only linear equality and inequality constraints,

and Slater’s condition is satisfied (for example, by g = (1/m)1), we know that the
optimal duality gap for the ERMP (31) and the dual problem (32) is zero. In other
words, the optimal value of the dual (32) is equal to R!

tot, the optimal value of the
ERMP. In fact, we can be very explicit: if X! is the optimal solution of the primal
ERMP (31), then

Z! = n(X!)−2, ν! = max
l

aT
l Z!al

are optimal for the dual ERMP (32). Conversely, if Z! is optimal for the dual
ERMP (32), then X! = (Z!/n)−1/2 is the optimal point for the primal ERMP (31).
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We can use the dual problem (32) to derive a useful bound on the suboptimality
of any feasible conductance vector g by constructing a dual feasible point from g.
With G = A diag(g)AT , we define

Z = n(G + 11T /n)−2

with ν = maxl aT
l Zal. The pair (Z, ν) is evidently feasible for the dual problem, so

its dual objective value gives a lower bound R on R!
tot:

R!
tot ≥ −ν − (1/n)1T Z1 + 2Tr(nZ)1/2 − n

= − max
l

n‖(G + 11T /n)−1al‖2 − ‖(G + 11T /n)−11‖2 + 2nTr(G + 11T /n)−1 − n

= − max
l

n‖(G + 11T /n)−1al‖2 + 2nTr(G + 11T /n)−1 − 2n

= R,

where we use (G + 11T /n)−11 = 1 in the second line.
Let η denote the difference between this lower bound R and the value of Rtot

achieved by the conductance vector g. This is a duality gap associated with g, i.e.,
an upper bound on the suboptimality of g. Using Rtot = nTr(G + 11T /n)−1 − n, we
can express this duality gap as

η = Rtot − R

= −nTr(G + 11T /n)−1 + n + max
l

n‖(G + 11T /n)−1al‖2

= −Rtot + max
l

(

−∂Rtot

∂gl

)

= −min
l

(

∂Rtot

∂gl
+ Rtot

)

.

In summary, we have the following inequality: given any feasible g, its associated total
effective resistance Rtot satisfies

Rtot − R!
tot ≤ −min

l

(

∂Rtot

∂gl
+ Rtot

)

.(33)

When g = g!, the right-hand side is zero by our optimality condition (28). This shows
that the duality gap converges to zero as g converges to g!.

We now derive another formulation of the dual ERMP (32). Recall that the
optimal point for this dual problem is

Z! = n(X!)−2 = n(G! + 11T /n)−2,

where G! = A diag(g!)AT . Since (G+11T /n)−21 = 1, we have Z!1 = n1. Therefore,
there exists an optimal dual solution satisfying Z1 = n1. It follows that we can
append this constraint to the dual (32) without changing its optimal value (which is
R!

tot). Thus we obtain the modified dual problem

maximize −ν − (1/n)1T Z1 + 2Tr(nZ)1/2 − n
subject to aT

l Zal ≤ ν, l = 1, . . . , m,
Z $ 0, Z1 = n1.

We will change variables to use Y = Z − 11T in place of Z. The constraints on Z
imply that Y 1 = 0, Y $ 0, and aT

l Y al = aT
l Zal ≤ ν; conversely, if these are satisfied,
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then Z is feasible in the modified problem above. We have 1T Z1 = 1T Y 1+ n2 = n2,
and, using

Z1/2 = (Y + 11T )1/2 = Y 1/2 + n−1/211T ,

we have Tr(nZ)1/2 = n1/2 TrY 1/2 + n. Thus, our modified dual problem can be
expressed as

maximize −ν + 2n1/2 TrY 1/2

subject to aT
l Y al ≤ ν, l = 1, . . . , m,

Y $ 0, Y 1 = 0.

Now let W = Y/ν, so our problem becomes

maximize −ν + 2(nν)1/2 TrW 1/2

subject to aT
l Wal ≤ 1, l = 1, . . . , m,

W $ 0, W1 = 0.

We can analytically maximize over ν to get ν = n(TrW 1/2)2. With this value of ν,
the objective function becomes n(TrW 1/2)2, as we get the problem

maximize n(TrW 1/2)2
subject to aT

l Wal ≤ 1, l = 1, . . . , m,
W $ 0, W1 = 0.

Finally, changing variables using V = W 1/2, we can write our dual problem as

maximize n(TrV )2
subject to ‖V al‖ ≤ 1, l = 1, . . . , m,

V $ 0, V 1 = 0.
(34)

In summary, the optimal value of the ERMP (31) is equal to the optimal value
of the alternative dual problem (34). Indeed, the optimal point for (34) is given by

V ! =
1

maxl ‖G!†al‖
G!†,

where G! = A diag(g!)AT .
We can also obtain a duality gap from (34) given any feasible g by setting V =

(1/ maxl ‖G†al‖)G† in (34) (clearly this V is dual feasible). It is interesting to note
that the duality gap obtained with this pair of primal and dual variables, η̂, is always
better than that obtained in (33), except at g!, when they are both zero:

η̂ = nTrG† − nTrG†2

maxl ‖G†al‖2

=
Rtot

− minl ∂Rtot/∂gl

(

−min
l

∂Rtot

∂gl
− Rtot

)

=
Rtot

− minl ∂Rtot/∂gl
η.(35)

If Rtot ≥ −minl ∂Rtot/∂gl for a feasible g, then g is the optimal allocation; therefore
the factor multiplying η is always less than or equal to 1, and is equal to 1 for g = g!.
So η̂ ≤ η.
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The dual problem (34) has the following geometric interpretation. Consider the
cylindrical ellipsoid defined by

E = {z | ‖V z‖ ≤ 1}.

This cylindrical ellipsoid has infinite extent in the direction 1; its projection on 1⊥

is an ellipsoid, centered at 0, with semiaxis lengths σi = 1/λi(V ), i = 1, . . . , n − 1,
where λi(V ) are the nonzero eigenvalues of V . Thus, the dual problem (34) is to
find the cylindrical ellipsoid E that contains the points a1, . . . , am and minimizes the
harmonic mean of its (noninfinite) semiaxis lengths.

4.4. An Interior-Point Algorithm. The ERMP can be solved numerically using
several methods, for example, via the SDP formulation (27), using a standard solver
such as SeDuMi [27] or DSDP [3], or by implementing a standard barrier method [7,
section 11.3], using the gradient and Hessian formulas given in section 2.9. In this
section we describe a simple custom interior-point algorithm for the ERMP that uses
the duality gap η̂ derived in section 4.3. This interior-point method is substantially
faster than an SDP formulation or a more generic method.

The logarithmic barrier for the nonnegativity constraint g ≥ 0 is

Φ(g) = −
m

∑

l=1

log gl,

defined for g > 0. In a primal interior-point method, we minimize tRtot + Φ, subject
to 1T g = 1, using Newton’s method, where t > 0 is a parameter; the solution of this
subproblem is guaranteed to be at most m/t suboptimal. Our formula (35) gives us
a nice bound on suboptimality,

η̂ =
Rtot

− minl ∂Rtot/∂gl

(

−min
l

∂Rtot

∂gl
− Rtot

)

= Rtot

(

1 +
Rtot

minl ∂Rtot/∂gl

)

,

given any feasible g. We can turn this around and use this bound to update the
parameter t in each step of an interior-point method by taking t = βm/η̂, where β is
some constant. (If η̂ = 0, we can stop because g is optimal.) This yields the following
algorithm.

Given relative tolerance ε ∈ (0, 1), β ≥ 1.
Set g := (1/m)1.
while η̂ > εRtot repeat

1. Set t = βm/η̂.
2. Compute Newton step δg for tRtot + Φ by solving

[

t∇2Rtot + ∇2Φ 1
1T 0

] [

δg
ν

]

= −
[

t∇Rtot + ∇Φ
0

]

.

3. Find step length s by backtracking line search [7, section 9.2].
4. Set g := g + sδg.

When the algorithm exits, we have Rtot − R!
tot ≤ η̂ ≤ εRtot, which implies that

Rtot − R!
tot

R!
tot

≤ ε

1 − ε .

Thus, the algorithm computes a conductance vector guaranteed to be no more than
ε/(1 − ε) suboptimal.
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This algorithm differs from the standard barrier method in [7, section 11.3] in
two ways: the exit condition uses the duality gap η̂ from (35), and the parameter
t is updated in every step of the interior-point method using η̂. Using β = 1 and
relative tolerance ε = 0.001, we have found the algorithm to be very effective, never
requiring more than 20 or so steps to converge for the many graphs we tried. The main
computational effort is in computing the Newton step (i.e., step 2), which requires
O(m3) arithmetic operations if no structure in the equations is exploited. For graphs
with no more than around m = 2000 edges, the algorithm is quite fast. While we
do not prove convergence of this algorithm, we note that the algorithm obtained by
modifying the barrier method in [7, section 11.3] to use the duality gap η̂ in the
exit criterion is also quite effective (typically needing 30 or so Newton steps), and is
provably convergent (using the same method as in [7, section 11.3.3]).

5. Analytical Solutions. In this section we describe several families of graphs for
which we can solve the ERMP analytically.

5.1. Trees. When the graph is a tree, the ERMP can be expressed as

minimize
∑m

l=1 bl/gl

subject to 1T g = 1, g ≥ 0,

using formula (5) given in section 2.3 for Rtot in a tree. Here bl is the total number of
paths that pass over the edge l, which is the same as nl(n−nl), where nl is the number
of nodes on one side of edge l. Evidently we will have g!

l > 0, so, from the optimality
conditions, we have ∂Rtot/∂gl = −Rtot for all edges. This gives bl/(g!

l )2 = R!
tot, so

g!
l = (bl/R!

tot)1/2, i.e., the optimal conductance across edge l is proportional to b1/2
l .

From 1T g! = 1, we find that the optimal conductance allocation is

g!
l =

b1/2
l

∑m
k=1 b1/2

k

.(36)

The associated optimal value of the total effective resistance is

R!
tot =

(

m
∑

l=1

b1/2
l

)2

.(37)

(Note that b1/2
l is the geometric mean of the number of nodes on the two sides of edge

l.)
As an example, consider a path on n nodes with edge k between nodes k and

k + 1 for k = 1, . . . , n − 1. Then bk = k(n − k), so the optimal conductance is

g!
k =

(k(n − k))1/2

∑n−1
j=1 (j(n − j))1/2

,

and the optimal total effective resistance is

R!
tot =

(

n−1
∑

k=1

(k(n − k))1/2

)2

.

Using the approximation
n−1
∑

k=1

(k(n − k))1/2 ≈ cn2, c =
∫ 1

0
(t(1 − t))1/2 dt ≈ 0.392,
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we have

g!
k ≈ (k(n − k))1/2

cn2 , R!
tot ≈ c2n4.

We will see in section 6 that a path has the largest value of R!
tot among all graphs

with n nodes.
Our next example is a star graph with n+1 nodes and n edges. Each edge has one

node on one side and n nodes on the other side, so bl = n for l = 1, . . . , n. Therefore
we have g!

l = 1/m, i.e., uniform allocation of conductance is optimal. (This also
follows from edge symmetry, discussed below.) The optimal total effective resistance
for a star graph is R!

tot = n3.
Our last example is a full binary tree with L levels, with a single (root) node at

level 1, two nodes at level 2, and so on. Altogether there are n = 2L − 1 nodes and
m = n−1 = 2L −2 edges. The two edges that connect the level 1 (root) node and the
two level 2 nodes each have 2L−1 nodes below it, and therefore 2L−1 − 1 nodes on the
other side (towards the root node). In general, 2i−1 edges connect level i−1 nodes to
level i nodes; each of these has 2L−i+1 − 1 nodes below it and therefore 2L − 2L−i+1

nodes on the other side. Thus, for edges that connect level i − 1 nodes and level i
nodes, we have

bl = (2L−i+1 − 1)(2L − 2L−i+1).

There are 2i−1 such edges, for each i between 2 and L, so

R!
tot =

L
∑

i=2

2i−1(2L−i+1 − 1)1/2(2L − 2L−i+1)1/2.

Using 2j−1 ≤ 2j − 1 < 2j and n = 2L − 1, we can show that

1
2

(n + 1)2

(
√

2 − 1)2

(

√

n + 1
2

− 1

)2

≤ R!
tot < 2

(n + 1)2

(
√

2 − 1)2

(

√

n + 1
2

− 1

)2

.

So R!
tot scales as n3 for a full binary tree with n nodes.

5.2. Symmetry. We can exploit symmetry to reduce the size of the optimization
problem that needs to be solved to find the optimal g. An automorphism of a graph
is a permutation π of the nodes such that (i, j) ∈ E if and only if (π(i),π(j)) ∈ E.
An automorphism induces a permutation of the edges as well: it maps edge l to edge
k if the nodes adjacent to edge l are mapped under π to the nodes adjacent to edge
k. We say that two edges are symmetric if there is an automorphism of the graph
that maps one edge to the other. The basic result we will use is this: If two edges are
symmetric, they must have the same optimal conductance value.

To show this, consider the graph with a set of edge conductances g, and let π be
an automorphism of the graph. We form a new conductance vector ĝ as follows. If
edge l is mapped to edge k by π, then we take ĝk = gl. In other words, we permute
the edge conductance values according to the edge permutation induced by π. Let
G = A diag(g)AT and Ĝ = A diag(ĝ)AT . Then we have

Ĝ = ΠGΠT ,

where Π is the permutation matrix representation of π. It follows that Rtot(g) and
Rtot(ĝ) are equal, since Ĝ and ΠGΠT have the same eigenvalues. Finally, suppose
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α
β

Fig. 1 A wheel graph on 10 nodes. The conductance of each spoke is α, and the conductance of
each rim edge is β.

that g is optimal. Then since ĝ has the same total effective resistance, it is also
optimal. But the optimal conductance is unique, so we must have ĝ = g. This means
that if an edge is mapped to another edge, i.e., the pair of edges is symmetric, then
they must have the same optimal conductance value. (For more on symmetries in
convex optimization in general, see, e.g., [7, Ex. 4.4]; for more in the context of graph
optimization problems, see [5, 18].)

A graph is edge-transitive if all pairs of edges are symmetric, i.e., for any two
edges, there is an automorphism of the graph that maps one edge to the other. For an
edge-transitive graph, the optimal conductances are all equal, i.e., we have g!

l = 1/m,
l = 1, . . . , m. Examples of such graphs include ring graphs, star graphs, and hypercube
graphs.

As a less trivial example of exploiting symmetry, we consider the wagon wheel
graph on n + 1 nodes, shown in Figure 1. Any pair of spoke edges is symmetric, and
any pair of rim edges is symmetric (for example, by the automorphism that rotates
one spoke to the other). By symmetry, the optimal conductances on the spoke edges
are all the same, say, α, and the optimal conductances on all the rim edges are also
all the same, say, β.

Thus the optimal conductance matrix G = A diag(g!)AT has the form

G =
[

nα −α1T

−α1 αI

]

−
[

0 0
0 βLCn

]

,

where LCn is the conductance matrix with unit weights for the ring graph Cn on n
nodes. The eigenvalues of G can be shown to be

0, (n + 1)α, (α+ 2β(1 − cos(2πk/n)), k = 1, . . . , n − 1.

Thus, the ERMP becomes the problem

minimize 1/(n + 1)α+
∑n−1

k=1 1/(α+ 2β(1 − cos(2πk/n)))
subject to n(α+ β) = 1, α ≥ 0, β ≥ 0,

(38)

with variables α and β. We can eliminate one of the variables, say, α, and set the
derivative to zero to see that the optimal β must satisfy

n−1
∑

k=1

1 − 2 cos(2πk/n)
(1 + nβ!(1 − 2 cos(2πk/n)))2

=
1

n + 1
1

(1 − nβ!)2
.

There is exactly one solution of this equation, since problem (38) is strictly convex.
We can find β! numerically using a simple bisection method or Newton’s method.
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a b

a
b

a

b c

b

b

a

a
a

b

Fig. 2 A barbell graph on 8 nodes.

The solution is quite interesting: for 5 ≤ n ≤ 10, more conductance is assigned to
the edges than the rim, but for n ≥ 11, more conductance is assigned to the spokes
than to the rim. (When n = 4, the wheel graph is the same as the complete graph,
so α! = β!.)

As another example, we consider the barbell graph Kn−Kn on 2n nodes, which
consists of two fully connected components of size n joined by a single edge between
nodes n and n+1, as shown in Figure 2. By symmetry, there are exactly three distinct
weights: the weights on edges neither of whose endpoints is n or n + 1, a; the weights
on edges with exactly one endpoint n or n+1, b; and the weight on the edge between
n and n + 1, c. The conductance matrix G for these weights is

G =









αI − a11T −b1
−b1 γ −c

−c γ −b1
−b1 αI − a11T









,

where 1 ∈ Rn−1, α = a(n − 1) + b, and γ = (n − 1)b + 2c.
The 2n eigenvalues of the conductance matrix with these weights can be shown

to be

0, a(n − 1) + b with multiplicity 2n − 4,

nb, (1/2)(nb + 2c ±
(

(2c + nb)2 − 8bc)
)1/2

.

Therefore, we have reduced the ERMP problem (which has m = n(n−1)+1 variables)
to the problem

minimize (2n − 4)/(a(n − 1) + b) + 1/nb + (nb + 2c)/2bc
subject to (n − 1)(n − 2)a + 2(n − 1)b + c ≤ 1,

a, b, c ≥ 0,
(39)

which has three variables: a, b, and c.
This problem has an analytical solution: the optimal weights are

a! =
µ

n − 1

(√
2 −

√
n + 1
n

)

, b! = µ

√
n + 1
n

, c! = µ

√

n

2
,

where µ is a normalizing constant,

µ =
(

(n − 2)
(√

2 −
√

n + 1
n

)

+ 2(n − 1)
√

n + 1
n

+
√

n

2

)−1

.
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Fig. 3 The optimal value R!
tot, and Rtot with uniform weights 1/m, as a function of n for the

barbell graph.

Evidently R!
tot scales as n3 for the barbell graph Kn−Kn. For the same graph,

the total effective resistance obtained with uniform weights gl = 1/m scales as n4.
We conclude that the suboptimality of the uniform weights grows unboundedly with
n, i.e., the optimal conductances are unboundedly better than uniform conductances.
In Figure 3, the optimal R!

tot is plotted as a function of n for the barbell graph along
with the total effective resistance with uniform weights.

6. Bounds on Optimal Total Effective Resistance. In this section we show that
among all graphs on n nodes, the path (with m = n − 1 edges) has the largest value
of R!

tot and the complete graph (with m = n(n − 1)/2 edges) has the smallest value
of R!

tot. That is, for any graph on n nodes,

n(n − 1)2/2 ≤ R!
tot ≤

(

n
∑

k=1

(k(n − k))1/2

)2

.(40)

The left-hand term is R!
tot for the complete graph Kn, and the right-hand term is

R!
tot for the path on n nodes. The right-hand term grows as n4, so the ratio grows as

n. The result (40) makes sense: it states that the path is the “least connected” graph
and the complete graph is the “most connected” graph, when measured by optimal
total effective resistance. (We note that [24] shows that the total effective resistance
with uniform rather than optimal weights is largest for the path and smallest for the
complete graph.)

We first observe that the optimal value of the ERMP, R!
tot, cannot increase when

edges are added to the underlying graph N , since any allocation of conductance on
the original graph is also feasible for the graph when edges are added. In other words,
the optimal total effective resistance is monotone nonincreasing in E, the set of edges
of the graph. (It is not monotone nonincreasing in the number of edges, |E|.)

It follows that the smallest value of R!
tot, among graphs on n nodes, is obtained

for the complete graph Kn. By symmetry, the optimal allocation of conductances for
Kn is uniform. Thus, the optimal conductance matrix is

A diag(g!)AT = G! = (n/m)(I − 11T /n),

where m = n(n − 1)/2. The eigenvalues of this matrix are 0 and n/m = 2/(n − 1)
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T1

T1

T2T2

T3T3

TdTd

n1

n2

n3

nd

n1 n2

n3

nd

p

q

r rp q

Fig. 4 The tree on the right, T̂ , is formed from T , the tree on the left by splicing node q between p
and r.

repeated n−1 times. So R!
tot = n(n−1)2/2 for Kn. This establishes the lower bound

in (40).
We now turn to the upper bound in (40). Since R!

tot cannot decrease as edges
are removed from the graph, we conclude that the largest value of R!

tot among graphs
with n nodes is obtained for a tree. It remains to show that among all trees on n
nodes, the path has the largest value of R!

tot. This implies that R!
tot for the path is

an upper bound on R!
tot for any graph on n nodes.

Let T be a tree that is not a path, i.e., a tree with at least one node with degree
greater than 2. We will show that we can construct a tree T̂ from T such that
R!

tot(T̂ ) > R!
tot(T ). This will establish our claim that the path has the highest value

of R!
tot among all trees (and, therefore, among all graphs) on n nodes.
Let p be a node in T with degree d ≥ 3. The removal of p disconnects T into d

subtrees, T1, . . . , Td, with sizes n1, . . . , nd, ordered so that n1 ≤ ni, 2 ≤ i ≤ d. Clearly,
n1 ≤ (n − 1)/d < n/2, since d > 2. Let q be the vertex that p is connected to in
T1. Form T̂ from T by inserting q between p and r, where r is the vertex that p is
connected to in T2. (See Figure 4.) It is easily verified that bl = nl(n − nl) does not
change for any edge except the edge between p and q, since the number of nodes to
one side of the edge does not change for any of these edges. The value of bl for (p, q)
is n1(n − n1) in T and is (n1 + n2)(1 +

∑d
j=3 ni) in T̂ . Since n1 < n/2 and n1 ≤ ni,

i = 2, . . . , d,

min{n1, n − n1} = n1 < min{n1 + n2, 1 + n3 + · · · + nd}.

So the value of bl for l ∼ (p, q) increases from T to T̂ :

bl(T ) = n1(n − n1) < (n1 + ni)(1 + n3 + · · · + nd) = bl(T̂ ).

Since bl for all other edges does not change from T to T̂ , we can conclude from (37)
that R!

tot(T ) < R!
tot(T̂ ). (Note that the choice of T2 is arbitrary: we could have

attached q between p and any other subtree; the crucial point is to move a subtree of
smallest size.) We have now established our bounds (40).

We note that a similar argument can be used to show that given any tree for
which there is a node at distance 2 from the node of maximum degree, a new tree
can be formed which has a smaller value of R!

tot. This means that the tree with the
smallest value of R!

tot is the star.

6.1. Lower Bound on Total Effective Resistance with Uniform Weights. Here
we derive a simple lower bound on Runif

tot , the total effective resistance with uniform
weights on the edges, i.e., for g = (1/m)1. With uniform weights, the conductance
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Fig. 5 Left: Optimal conductance allocation on a path on 11 nodes. Right: Optimal conductance
allocation on a tree with 25 nodes.

matrix is

Gunif = (1/m)AAT = (1/m)L,

where L is the (unweighted) Laplacian of the graph. Therefore we have

Runif
tot = n

n
∑

i=2

1
λi(G)

≥ n

λ2(G)
=

nm

λ2(L)
.

This shows that a graph with small algebraic connectivity must have large Runif
tot . We

can bound λ2(L), the algebraic connectivity of the graph, in terms of the size of a cut
in the graph [13, 18]:

λ2(L) ≤ min
X⊆V

n|EX |
|X||Xc|

,

where |X| is the size of a subset of nodes X, Xc is the set of remaining nodes, and
|EX | is the number of edges in the cut that partitions the graph into (X, Xc). Using
this, we get

Runif
tot ≥ max

X⊆V

m|X||Xc|
|Ex| .(41)

This bound says that among graphs on n nodes with m edges, uniform allocation of
conductance leads to a large total effective resistance for graphs which have sparse
cuts. The barbell graph is a graph with one very sparse cut; it is therefore not
surprising that the uniform allocation is much worse than the optimal allocation of
weights for the barbell.

7. Examples. In this section we show some examples of optimal conductance
allocations on graphs. In each example, we draw the edges with width and color
saturation proportional to the optimal edge conductance.

Our first two examples are a path on 11 nodes and a tree on 25 nodes, shown in
Figure 5. The optimal conductances for these come from (36). The optimal conduc-
tance is larger on edges with more paths passing through them than edges near the
leaves, which have fewer paths passing through them.

Our next two examples are an 8 × 8 mesh and a modified 8 × 8 mesh, shown in
Figure 6. The optimal conductances for these graphs were computed numerically.

In Figure 7, we plot the optimal conductances for a barbell. Finally, in Figure 8,
we plot the optimal conductances for a randomly generated graph with 25 nodes and
88 edges. Here too we see large conductance allocated to edges across sparse cuts.
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Fig. 6 Optimal conductance allocation on an 8×8 mesh (left) and on a modified 8×8 mesh (right).

Fig. 7 Optimal conductance allocation on barbell graph with 16 nodes.

Fig. 8 Optimal conductance allocation on randomly generated graph with 25 nodes and 88 edges.

8. Extensions. We conclude by listing some variations on the ERMP that are
convex optimization problems and can be handled using similar methods. Since each
Rij is a convex function of the conductances, we can minimize any nondecreasing
convex function of the Rij (which is convex). Some interesting (convex) objectives,
in addition to Rtot, include the following.

• Minimizing effective resistance between a specific pair of nodes. We allocate
conductance to minimize the effective resistance between a specific pair of
nodes, i and j. This problem has the following simple solution: Allocate
the conductance equally to the edges lying on a shortest path between i and
j. This conductance allocation violates our assumption (4); the effective
resistance between any pair of nodes not on the path is undefined.

• Minimizing the sum of effective resistances to a specific node. This problem
can be formulated as an SDP and solved by modifications to the methods
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discussed in this paper. Examples show that the optimal allocation of weights
need not be a tree.

• Minimizing maximum effective resistance. The maximum effective resistance
over all pairs of nodes, maxi,j Rij , is the pointwise maximum of the convex
functions Rij , and is therefore also a convex function of the conductances g [7,
section 3.2.3]. The problem of minimizing the maximum effective resistance
is a convex optimization problem, can be formulated as an SDP, and solved
using standard interior-point methods.

We mention one more extension, minimizing Rtot without the nonnegativity con-
straints on the edge conductances:

minimize Rtot
subject to 1T g = 1.

(42)

In this problem the conductances can be negative, but we restrict the domain of the
objective Rtot to {g | G + 11T /n ) 0}. This problem can be solved using Newton’s
method, using the derivatives found in section 2.9. The optimality conditions for this
problem are simply that 1T g = 1 (feasibility) and that all components of the gradient,
∇Rtot, are equal; specifically, ∇Rtot(g) = −Rtot1.
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