Social Computing and User-generated Content

ARPITA GHOSH Cornell University

ACM EC 2013 TUTORIAL

June 16, 2013

Social Computing and User-generated Content

Contributions from users increasingly central to Web

- Information: Prediction markets, ratings, opinion polls, ...
- Content: User-generated content (UGC)
 Reviews, Q&A forums, Wikipedia, social media, meta-data, ...
- Labor: Crowdsourcing and human computation
 - Games with a Purpose, Mechanical Turk, Citizen Science, crowdsourcing contests, ...

Contributions from users increasingly central to Web

- Information: Prediction markets, ratings, opinion polls, ...
- Content: User-generated content (UGC)
 Reviews, Q&A forums, Wikipedia, social media, meta-data, ...
- Labor: Crowdsourcing and human computation
 - Games with a Purpose, Mechanical Turk, Citizen Science, crowdsourcing contests, ...

Quality, participation, vary widely across sites

• User behavior depends on *incentives*

- Evidence (anecdotal, formal) of self-interested users
- 'Goodness' of system's output depends on user behavior

• User behavior depends on *incentives*

- Evidence (anecdotal, formal) of self-interested users
- 'Goodness' of system's output depends on user behavior
- Formal incentive design for social computing and UGC

- User behavior depends on *incentives*
 - Evidence (anecdotal, formal) of self-interested users
 - 'Goodness' of system's output depends on user behavior
- Formal incentive design for social computing and UGC
 - Agents make choices over actions
 - Choices of actions lead to outcomes, determine payoffs
 - Agents choose actions to maximize their payoffs
 - Mechanism design: Get agents to choose actions maximizing value to system

Incentives and strategic behavior

- Action choices in social computing and UGC:
 - Information: Revealing information truthfully (e.g., ratings)
 - Participation (Entry is endogenous, strategic choice!)
 - Effort: Quality of content (UGC) or output (crowdsourcing)
 - Other domain-specific choices

Incentives and strategic behavior

- Action choices in social computing and UGC:
 - Information: Revealing information truthfully (e.g., ratings)
 - Participation (Entry is endogenous, strategic choice!)
 - Effort: Quality of content (UGC) or output (crowdsourcing)
 - Other domain-specific choices
- Constructing a model: 'Capturing' strategic issues
 - Who are agents?
 - What are their costs and benefits?
 - How are agents' outputs evaluated?
 - What are 'good' outcomes?

Incentives and strategic behavior

• Action choices in social computing and UGC:

- Information: Revealing information truthfully (e.g., ratings)
- Participation (Entry is endogenous, strategic choice!)
- Effort: Quality of content (UGC) or output (crowdsourcing)
- Other domain-specific choices
- Constructing a model: 'Capturing' strategic issues
 - Who are agents?
 - What are their costs and benefits?
 - How are agents' outputs evaluated?
 - What are 'good' outcomes?

But before that...

What is social computing anyway?

Social Computing and User-generated Content

What is social computing anyway?

Social computing: "Humans in a social role where communication is mediated by technology" (Quinn and Bederson, CHI'11)

What is social computing anyway?

Social computing: "Humans in a social role where communication is mediated by technology" (Quinn and Bederson, CHI'11)

• A taxonomy of online user-contribution domains

- "Online collective action, social interaction; exchange of multimedia information, evolution of aggregate knowledge"
- Blogs, wikis, online communities, ...

Introduction

- Eliciting information (Yiling Chen)
 - Eliciting information for events with verifiable outcomes
 - Eliciting information for events with unverifiable outcomes
- Eliciting effort and participation
 - Aspects of a model: Rewards, observability, value
 - Perfect observability: Crowdsourcing contests and other things
 - Imperfect observability: User-generated content
 - Rewarding overall contribution

Part I: Eliciting information

YILING CHEN, Harvard University (Slides available at Yiling's webpage)

Part II: Eliciting effort and participation

ARPITA GHOSH

Cornell University

Social Computing and User-generated Content

Outline

- Aspects of a model: Rewards, observability, value
- Perfect observability
 - Monetary rewards: Crowdsourcing contests, social search
 - Non-monetary attention rewards
- Imperfect observability: User-generated content
 - Private provision of public goods approach
 - Models and mechanisms: Attention, virtual points rewards
 - Introducing temporal aspects
- Unobservable output: Eliciting effort and information
- Rewarding overall contribution

Incentives for effort

- Effort as a choice in social computing
 - Review sites (Yelp, Amazon, ...), Q&A forums (Y! Answers, StackOverflow, ...), crowdsourcing platforms (Mechanical Turk, Citizen Science, ...), contests (TopCoder, TaskCN), ...

Incentives for effort

- Effort as a choice in social computing
 - Review sites (Yelp, Amazon, ...), Q&A forums (Y! Answers, StackOverflow, ...), crowdsourcing platforms (Mechanical Turk, Citizen Science, ...), contests (TopCoder, TaskCN), ...
- Quality, participation varies widely across social computing sites
- How to incentivize good outcomes?

Incentives for effort

- Effort as a choice in social computing
 - Review sites (Yelp, Amazon, ...), Q&A forums (Y! Answers, StackOverflow, ...), crowdsourcing platforms (Mechanical Turk, Citizen Science, ...), contests (TopCoder, TaskCN), ...
- Quality, participation varies widely across social computing sites
- How to incentivize good outcomes?
 - Quality: What qualities of contributions arise in equilibrium?
 - Quantity, or participation: How many, what kind of users participate in equilibrium?
 - *Endogenous* entry: Participation is typically voluntary, strategic choice

Two components to incentivizing participation and effort:

Two components to incentivizing participation and effort:

- What constitutes a reward?: Understanding contributor motivations
 - Monetary rewards
 - Social-psychological rewards: Attention [Huberman et al '09, ...], reputation and status [Beenen et al'04, ...], virtual points(!) [Nam et al '09, ...], ...

Two components to incentivizing participation and effort:

- What constitutes a reward?: Understanding contributor motivations
 - Monetary rewards
 - Social-psychological rewards: Attention [Huberman et al '09, ...], reputation and status [Beenen et al'04, ...], virtual points(!) [Nam et al '09, ...], ...
- How to allocate rewards?
 - Rewards are limited: Allocate to incentivize desirable outcomes
 - Game-theoretic framework for incentivizing effort

- Incentivizing effort: Elements of a model
 - Agents, utilities, outcomes, 'goodness' of outcomes, ...

- Incentivizing effort: Elements of a model
 - Agents, utilities, outcomes, 'goodness' of outcomes, ...
- How do different social computing systems differ?
 - Nature of reward and reward regimes
 - Constraints on rewards
 - Observability of (value of) agents' output
 - How output translates to value

- Different motivators lead to different rewards:
 - Money: Amazon Mechanical Turk, crowdsourcing contests (TopCoder, Innocentive, TaskCN), ...
 - Attention, reputation and status, social exchange: YouTube, Q&A forums, discussion boards, ...

- Different motivators lead to different rewards:
 - Money: Amazon Mechanical Turk, crowdsourcing contests (TopCoder, Innocentive, TaskCN), ...
 - Attention, reputation and status, social exchange: YouTube, Q&A forums, discussion boards, ...
 - Mixed incentives

- Different motivators lead to different rewards:
 - Money: Amazon Mechanical Turk, crowdsourcing contests (TopCoder, Innocentive, TaskCN), ...
 - Attention, reputation and status, social exchange: YouTube, Q&A forums, discussion boards, ...
 - Mixed incentives
- Constraints vary with nature of reward and setting:
 - Money: Arbitrary redistribution, transferable
 - Total cost as objective or constraint: Minimize cost versus budget constraint
 - Social-psychological rewards: Redistribution, transfers may be constrained

- Reward *regimes* vary with setting:
 - Bounded versus diverging rewards: Attention rewards on very popular UGC sites
 - Micro-payments (Amazon Mechanical Turk): Behavioral preferences may change wrt conventional payments

- Reward *regimes* vary with setting:
 - Bounded versus diverging rewards: Attention rewards on very popular UGC sites
 - Micro-payments (Amazon Mechanical Turk): Behavioral preferences may change wrt conventional payments
- Is total available reward exogenous or *endogenous*?
 - Exogenous: Fixed total prize money (crowdsourcing contests)
 - Endogenous: Social interaction (reward increases with increased (elicited) participation); attention rewards (higher quality content attracts larger viewership), ...

Elements of a model: Observability of output

- Perfectly observable output
 - Relative value— perfect *rank* orderings: Crowdsourcing contests (Innocentive, ...)
 - Absolute value (less common): Output-verified piece-rate tasks (ODesk, ...), number of recruits (social search), ...
 - An underlying issue: How do output and value relate?

Elements of a model: Observability of output

- Perfectly observable output
 - Relative value— perfect *rank* orderings: Crowdsourcing contests (Innocentive, ...)
 - Absolute value (less common): Output-verified piece-rate tasks (ODesk, ...), number of recruits (social search), ...
 - An underlying issue: How do output and value relate?
- Imperfectly observable output
 - Output value noisily reflected by ratings, votes: User-generated content (reviews, comments, answers, ...)

Elements of a model: Observability of output

- Perfectly observable output
 - Relative value— perfect *rank* orderings: Crowdsourcing contests (Innocentive, ...)
 - Absolute value (less common): Output-verified piece-rate tasks (ODesk, ...), number of recruits (social search), ...
 - An underlying issue: How do output and value relate?
- Imperfectly observable output
 - Output value noisily reflected by ratings, votes: User-generated content (reviews, comments, answers, ...)
- Unobservable, or unverifiable, output
 - No independent evaluation of output: Crowdsourced labor (e.g. image labeling on MTurk)

- Value mainly 'ability'-dependent: Expertise-based Q&A forums (medical, legal), ...
 - Ability: Intrinsic, or related to costly-to-acquire knowledge/skill
 - Participation-only models

- Value mainly 'ability'-dependent: Expertise-based Q&A forums (medical, legal), ...
 - Ability: Intrinsic, or related to costly-to-acquire knowledge/skill
 - Participation-only models
- Effort-only value: Reviews, meta-data (tags, bookmarks), ...

- Value mainly 'ability'-dependent: Expertise-based Q&A forums (medical, legal), ...
 - Ability: Intrinsic, or related to costly-to-acquire knowledge/skill
 - Participation-only models
- Effort-only value: Reviews, meta-data (tags, bookmarks), ...
- Value depends on ability and effort: Discussion forums, blogs, crowdsourcing (image classification), ...

- Value mainly 'ability'-dependent: Expertise-based Q&A forums (medical, legal), ...
 - Ability: Intrinsic, or related to costly-to-acquire knowledge/skill
 - Participation-only models
- Effort-only value: Reviews, meta-data (tags, bookmarks), ...
- Value depends on ability and effort: Discussion forums, blogs, crowdsourcing (image classification), ...
- Associated incentive issues:
 - Adverse selection, moral hazard (Jian & MacKie Mason'13)
 - Abilities of participants who (endogenously) choose to contribute (Morgan et al '12)
Elements of a model: Effort and value

• What is the value from *multiple* contributions?

Elements of a model: Effort and value

- What is the value from *multiple* contributions?
- Participation and effort typically both strategic choices: Quality-quantity tradeoffs
 - Few very high quality or several medium-quality contributions
 - $\bullet\,$ Value from highest quality contribution: Contests, some kinds of Q&A, \ldots
 - Value from quantity: Reviews, other Q&A (e.g., recommendations for a week in Philly), ...

Elements of a model: Effort and value

- What is the value from *multiple* contributions?
- Participation and effort typically both strategic choices: Quality-quantity tradeoffs
 - Few very high quality or several medium-quality contributions
 - $\bullet\,$ Value from highest quality contribution: Contests, some kinds of Q&A, \ldots
 - Value from quantity: Reviews, other Q&A (e.g., recommendations for a week in Philly), ...
- Moving beyond 'vector of qualities': Value from set of contributions

- Aspects of a model: Rewards, observability, value
- Perfect observability
 - Monetary rewards: Crowdsourcing contests, social search
 - Non-monetary attention rewards
- Imperfect observability: User-generated content
- Unobservable output: Eliciting effort and information
- Rewarding overall contribution

Contests: Monetary rewards, perfectly observable quality

 Online crowdsourcing contests (Innocentive, TopCoder, TaskCN, ...)

Contests: Monetary rewards, perfectly observable quality

- Online crowdsourcing contests (Innocentive, TopCoder, TaskCN, ...)
- Contests: Pre-Internet phenomenon!
 - 1714: \pounds 20,000 contest for finding longitude at sea
 - 1829: £500 for railway engine
 - Pre-World War II: US Army contests for awarding contracts

- Online crowdsourcing contests (Innocentive, TopCoder, TaskCN, ...)
- Contests: Pre-Internet phenomenon!
 - 1714: \pounds 20,000 contest for finding longitude at sea
 - 1829: £500 for railway engine
 - Pre-World War II: US Army contests for awarding contracts
- An aside: Innovation races
 - First participant to meet some set quality bar wins
 - Contrast with contest: Fixed evaluation date, rank by quality
 - Strategic choice in models: Investment rate (Loury'79, Lee-Wilde'80, ...)

- Online crowdsourcing contests (Innocentive, TopCoder, TaskCN, ...)
- Contests: Pre-Internet phenomenon!
 - 1714: \pounds 20,000 contest for finding longitude at sea
 - 1829: £500 for railway engine
 - Pre-World War II: US Army contests for awarding contracts
- An aside: Innovation races
 - First participant to meet some set quality bar wins
 - Contrast with contest: Fixed evaluation date, rank by quality
 - Strategic choice in models: Investment rate (Loury'79, Lee-Wilde'80, ...)
- Netflix Prize: Features of both races and contests

Incentivizing effort in contests

- Observability: Principal can (at least) rank contributions perfectly
- Basic contest design problem:
 - Contestants have cost to effort
 - Principal has some total available reward budget
 - How to split reward to induce 'optimal outcomes'?

Incentivizing effort in contests

- Observability: Principal can (at least) rank contributions perfectly
- Basic contest design problem:
 - Contestants have cost to effort
 - Principal has some total available reward budget
 - How to split reward to induce 'optimal outcomes'?
- Designer's objective: Best, average, ... (value from output)

Incentivizing effort in contests

- Observability: Principal can (at least) rank contributions perfectly
- Basic contest design problem:
 - Contestants have cost to effort
 - Principal has some total available reward budget
 - How to split reward to induce 'optimal outcomes'?
- Designer's objective: Best, average, ... (value from output)
- Additional dimensions:
 - Restricting participation: Entry fees, invitation, ...
 - Staging: Single-stage, or multi-stage evaluation

Tournament design: Digging for Golden Carrots [Taylor'95]

- Potential participants: Pool of ex-ante identical firms
- Sponsor: Invites N firms to compete for prize P
 - Winner chosen in period T
 - Each firm pays entry cost E
 - Firm *i* 'trying' in period *t* draws $x_{i,t}$ IID at cost *C*
 - Prize awarded to firm $i = \arg \max_{i,1 \le t \le T} x_{i,t}$
- Sponsor chooses N, E
 - Free entry $(E = 0, N = N_{max})$ is *not* optimal
 - Optimal tournament restricts entry, taxes entrants E > 0

Contest design: Is awarding one prize optimal anyway?

Optimal Allocation of Prizes in Contests [Moldovanu-Sela'01]

- N heterogenous contestants with differing abilities
 - N exogenously fixed
- Single-period game: Contestants choose effort
 - Cost of effort c(e) increasing in e
 - Perfectly-observable effort: Highest effort wins first prize, ...
- Total prize P: Can be arbitrarily allocated amongst 1,..., N
- Designer wants to maximize *total* elicited effort
 - c linear or concave: Winner-take-all is optimal
 - c convex: Optimal contest may award multiple prizes

Contest architecture [Moldovanu-Sela'06]

- Sub-contests with winners competing, versus single contest
- Designer's objective: Maximizing total or best contribution
- Linear effort cost c(e)
 - Maximizing total effort: Single winner-take-all contest is optimal
 - Maximizing highest effort: Two-divisional final
- Convex costs: Many sub-contests, prizes to finalists may be optimal

Contest design: Crowdsourcing contests

- Optimal design of crowdsourcing contests [Archak-Sundararajan'09]
 - Principal's utility: Sum of top k contributions minus prize P
 - Linear effort costs, heterogenous participants
 - Risk-neutral agents: Winner-take-all contest is optimal
 - Risk-averse agents: Award multiple prizes
 - Structure of equilibrium in large N limit
- Other aspects of crowdsourcing contest design
 - Wasted effort from sunk costs [Chawla et al'11]
 - Endogenous entry [Ghosh-McAfee'12]
 - . . .

Perfectly observable quality: Social computing on networks

- Information search on social network
 - Root node wants information, located somewhere in social network
 - How to incentivize search on network?

Perfectly observable quality: Social computing on networks

- Information search on social network
 - Root node wants information, located somewhere in social network
 - How to incentivize search on network?
- Monetary rewards, (first-order) perfectly observable quality

Perfectly observable quality: Social computing on networks

- Information search on social network
 - Root node wants information, located somewhere in social network
 - How to incentivize search on network?
- Monetary rewards, (first-order) perfectly observable quality
- Query-incentive networks [Kleinberg-Raghavan'05]
 - Root values query at v
 - Promises rewards to neighbors if supply answer
 - Every node can propagate query, promise reward-share
 - Size of query incentive v to obtain answer as function of answer'rarity', network structure

Social computing on networks: A real instance

- The DARPA red balloon challenge (2009)
 - 10 red balloons, distributed across US
 - First team to correctly locate all balloons wins \$40,000
- Incentives challenges:
 - Incentivize agents to participate
 - Each participant should want to incentivize others to participate
- Won by MIT team in under 9 hours
 - ${\scriptstyle \bullet}\,$ Recruited ${\approx}4400$ participants in under 36 hours

'Recursive incentive scheme' used by winning team [Pickard et al'11]

- Exponential reward structure, decreasing down from 'finders' to root:
 - Never runs a deficit: Respects total budget
 - Incentivizes further recruitment
 - Does not create incentives to bypass 'inviters'

'Recursive incentive scheme' used by winning team [Pickard et al'11]

- Exponential reward structure, decreasing down from 'finders' to root:
 - Never runs a deficit: Respects total budget
 - Incentivizes further recruitment
 - Does not create incentives to bypass 'inviters'
- *Does* provide incentives for false-name attacks: Output is not quite "perfectly observable"!
 - Sybil-proof mechanisms [Babaioff et al'12]

Perfectly observable quality: Non-monetary rewards

- Attention rewards in crowdsourced content
 - Q&A forums (Quora, StackOverflow, ...)
 - Asker can supply rank-ordering of answers

- Attention rewards in crowdsourced content
 - Q&A forums (Quora, StackOverflow, ...)
 - Asker can supply rank-ordering of answers
- Total reward cannot be (reasonably) arbitrarily redistributed
 - Attention at position i + 1 is subset of attention at i
 - Maximum available attention at position *i*: A_i
 - Constraint: Choose reward $a_i \leq A_i$
 - Note contrast with sum constraint from monetary rewards $(\sum_{i=1}^{n} a_i \leq B)$

Optimal mechanisms for attention rewards

- UGC site can suppress content (*a_i* < *A_i*): Eliminate; display less prominently...
 - Payoff to poor quality falls, but so does participation
 - What $a_i \leq A_i$ lead to 'best' outcomes?

Optimal mechanisms for attention rewards

- UGC site can suppress content (a_i < A_i): Eliminate; display less prominently...
 - Payoff to poor quality falls, but so does participation
 - What $a_i \leq A_i$ lead to 'best' outcomes?
- Full reward to all but lowest possible rank optimizes entire equilibrium distribution of qualities: [Ghosh-McAfee'12]

 $a_i = A_i, i = 1, ..., n - 1; \quad a_n = \min(A_n, c(0))$

- Optimal reward for lowest possible rank depends on cost of producing lowest quality
- Reward structure optimal for *any* increasing function of qualities (accounting for endogenous participation)

- Aspects of a model: Rewards, observability, value
- Perfect observability
- Imperfect observability: User-generated content
 - Private provision of public goods approach
 - Models and mechanisms: Attention, virtual points rewards
 - Introducing temporal aspects
- Unobservable output: Eliciting effort and information
- Rewarding overall contribution

Imperfectly observable quality

- Imperfectly observable quality:
 - Agents' effort does not perfectly map into output
 - Effort maps perfectly to output, but system cannot observe quality perfectly: Noisy observations

Imperfectly observable quality

- Imperfectly observable quality:
 - Agents' effort does not perfectly map into output
 - Effort maps perfectly to output, but system cannot observe quality perfectly: Noisy observations
- An aside: Who makes observations of output?
 - Disinterested observers: Raters with no agenda (Typical assumption in literature so far)
 - Strategic raters (such as competitors): We'll return to this briefly later

Imperfectly observable quality: User-generated content (UGC)

- UGC: Information contributed by users with no *direct*, *extrinsic* compensation [MacKie-Mason'09]
 - Reviews (Amazon, Yelp, TripAdvisor, ...)
 - Knowledge-sharing forums (Quora, StackOverflow, Y!A, ...)
 - Comments (Slashdot, News, ...)
 - Social media (Blogs, YouTube, Flickr, ...)
 - Metadata: Tags, bookmarks (del.icio.us, ...)
- No single principal who evaluates quality: User-contributed ratings
 - Infeasible: Scale of contributions

Imperfectly observable quality: User-generated content (UGC)

- UGC: Information contributed by users with no *direct*, *extrinsic* compensation [MacKie-Mason'09]
 - Reviews (Amazon, Yelp, TripAdvisor, ...)
 - Knowledge-sharing forums (Quora, StackOverflow, Y!A, ...)
 - Comments (Slashdot, News, ...)
 - Social media (Blogs, YouTube, Flickr, ...)
 - Metadata: Tags, bookmarks (del.icio.us, ...)
- No single principal who evaluates quality: User-contributed ratings
 - Infeasible: Scale of contributions
 - Value of content not determined by any single agent

Incentives in user-generated content

- Key issues in UGC
 - Quantity: Inducing adequate participation
 - Quality: Contributions are not homogenous (unlike monetary donations)
 - Evaluation: Quality not easy or cheap to evaluate
 - Spam: Detect and remove rather than disincentivize (not this talk)
- How to incentivize high quality and participation? Modeling incentives in UGC

Incentives in user-generated content

- Key issues in UGC
 - Quantity: Inducing adequate participation
 - Quality: Contributions are not homogenous (unlike monetary donations)
 - Evaluation: Quality not easy or cheap to evaluate
 - Spam: Detect and remove rather than disincentivize (not this talk)
- How to incentivize high quality and participation? Modeling incentives in UGC
 - What is quality?
 - Agents and strategies, evaluation, ...
 - Objectives, metrics

Incentivizing UGC: Private provision of public goods [Jian-MacKie Mason'09,'13]

- Distinctions from charitable giving:
 - Non-homogeneity of contributions: Content qualities unequal
 - No side payments, or direct transfers
- Technology-reliant incentives:
 - Functionality in exchange for content (bookmarking, photo storage, ...)
 - Provide social motivators (interaction, reputation, ...)
 - Exclusion mechanisms: Block or limit access to content

Incentives in UGC: A public-goods perspective

- *Exclusion mechanisms*: Content need not remain pure public good
 - Limit usage based on contribution level: Glassdoor, P2P, ...
 - Cost-sharing literature: Raising money versus effort, for public good of known value, ...
- Effectiveness of minimum-threshold mechanisms
 - Evidence from lab experiments [Swope'02, Kocher'05, Croson'08]
 - Game-theoretic analysis of efficiency [Wash-MacKie-Mason'08, Jian'10]

Incentivizing high-quality UGC: Attention rewards

- A game-theoretic model with attention rewards [Ghosh-McAfee'11]
 - Attention motivates contributors: Empirical studies
 - Model, analysis, agnostic to why users like attention
- Quality is a probability $q \in [0, 1]$
 - q: Probability viewer answers yes to "Is content useful?"
- Contributors: Cost to quality, benefit from attention
 - Strategies: Quality and participation
- Evaluation: Non-strategic viewers rate according to q

Incentivizing high-quality UGC: Attention rewards

- Metric: Asymptotic (diverging-attention limit) equilibrium participation, quality of contributions
- Asmptotically optimal quality, high participation achievable with simple elimination mechanism
- Incentives in rank-order UGC mechanisms [Ghosh-Hummel'11]
 - Also incentivize near-optimal quality, high participation: Need adequate separation between ranks; zero attention to very low ranks
 - Equilibrium quality 'dominates' that in proportional mechanism
User-generated content: Virtual points rewards

- Virtual points motivate users [Nam et al'09, ...]
 - Online Q&A forums (Y! Answers, Naver, ...),
 - Non-diverging, arbitrarily allocatable
- Many online Q&A forums use *best-contribution* mechanisms
 - Winner gets p_B , everyone else gets p_C
- Can (p_B; p_C) structure *implement* optimal outcomes? [Ghosh-Hummel'12]
 - Yes: When contribution's value largely determined by expertise
 - When value depends on expertise and effort: Only possibly with noisy rankings!

Imperfectly observable quality: Strategic rating

- System cannot directly observe qualities: Relies on user ratings
- What if voters are *strategic*?
 - Voters also contributors of content
 - Compete with other contributors for high rankings

Imperfectly observable quality: Strategic rating

- System cannot directly observe qualities: Relies on user ratings
- What if voters are *strategic*?
 - Voters also contributors of content
 - Compete with other contributors for high rankings
- Voting for the voters [Alon et al'11]
 - Approval voting: Every voter is also a candidate
 - Strategyproof, approximately optimal mechanisms for selecting *k*-best subset

Imperfectly observable quality: Strategic rating

- System cannot directly observe qualities: Relies on user ratings
- What if voters are *strategic*?
 - Voters also contributors of content
 - Compete with other contributors for high rankings
- Voting for the voters [Alon et al'11]
 - Approval voting: Every voter is also a candidate
 - Strategyproof, approximately optimal mechanisms for selecting *k*-best subset
- Incentivizing *contribution*, in presence of strategic raters: Need for models, mechanisms

Temporal issues

- Literature discussed so far (largely) did not model time
 - Simultaneous contributions by agents
 - No temporal aspect to evaluating output

Temporal issues

- Literature discussed so far (largely) did not model time
 - Simultaneous contributions by agents
 - No temporal aspect to evaluating output
- Time and input: Eliciting timely contributions in Q&A forums [Jain et al'09]
 - Action choice: Time of contribution (no quality dimension)
 - Reward allocation rules and efficiency of equilibria

Temporal issues

- Literature discussed so far (largely) did not model time
 - Simultaneous contributions by agents
 - No temporal aspect to evaluating output
- Time and input: Eliciting timely contributions in Q&A forums [Jain et al'09]
 - Action choice: Time of contribution (no quality dimension)
 - Reward allocation rules and efficiency of equilibria
- Time and output: Incentives when qualities are *learnt* [Ghosh-Hummel'13]
 - (Simultaneous) contributions rated over time; attention reward from each rater
 - Multi-armed bandit problem with endogenous arms

- Aspects of a model: Rewards, observability, value
- Perfect observability
- Imperfect observability: User-generated content
- Unobservable output: Eliciting effort and information
- Rewarding overall contribution

Eliciting effort when quality is unobservable [Dasgupta-Ghosh'13]

• Crowdsourced judgement: Image labeling and identification, content rating, peer grading, ...

Eliciting effort when quality is unobservable [Dasgupta-Ghosh'13]

- Crowdsourced judgement: Image labeling and identification, content rating, peer grading, ...
 - Unobservable ground truth
 - Effort-dependent accuracy
 - Information elicitation, with endogenous proficiency

Eliciting effort when quality is unobservable [Dasgupta-Ghosh'13]

- Crowdsourced judgement: Image labeling and identification, content rating, peer grading, ...
 - Unobservable ground truth
 - Effort-dependent accuracy
 - Information elicitation, with endogenous proficiency
- Main result: Mechanism where maximum effort-truthful reporting is *highest-payoff* equilibrium (No task-specific collusions)
 - Reward for agreement, but also
 - Subtract statistic term penalizing *blind* agreement: Designed so agents receive zero payoff without effort

- Aspects of a model: Rewards, observability, value
- Perfect observability
- Imperfect observability: User-generated content
- Unobservable output: Eliciting effort and information
- Rewarding overall contribution

Moving beyond single tasks: Incentivizing overall contribution

• So far: Models, incentives for *single* action/contribution/task

Moving beyond single tasks: Incentivizing overall contribution

- So far: Models, incentives for *single* action/contribution/task
- Rewarding contributors for *overall* identity:
 - Site-level accomplishments based on cumulative contribution: Badges, leaderboards, reputations...

- So far: Models, incentives for *single* action/contribution/task
- Rewarding contributors for *overall* identity:
 - Site-level accomplishments based on cumulative contribution: Badges, leaderboards, reputations...
- Rewards valued by users: Increased engagement
 - Reputation: Value online and offline (StackOverflow, ...)
 - Badges: Formal inference from data [Anderson et al'13]
 - Anecdotal: Online discussion boards for Amazon Top-Reviewer list, Y! Answers Top-Contributor badge

Rewarding for overall contribution

- Gamification: Badges, leaderboard positions, ...
- Different gamification *designs* online:
 - StackOverflow, Foursquare, ...: Badges for activity milestones ('Absolute' badges)
 - Y!Answers, Quora, Tripadvisor: Top Contributors ('Competitive' badges)
 - Amazon: Top Reviewer List (Rank-order rewards)
- Rewards valued by users, but require costly effort: Gamification induces *mechanism*
- How to 'gamify' to incentivize participation, effort?

Some questions

- What incentives are created by absolute badges, and by competitive badges?
- How do these incentives compare?
- Should competitive badges be awarded to fixed number or fraction of participants?
- Should multiple absolute badges be awarded, and if yes, 'how'?
- How should rank-based rewards be designed?
- What if value from winning depends on other winners?

Incentives and badge designs [Easley-Ghosh'13]

- Absolute standards mechanism \mathcal{M}_{α} : Badges for output α
- Relative standards mechanism M_ρ: Badges to top ρ contributors
- Equilibrium analysis of incentives:
 - $\mathcal{M}_{\rho}:$ Equilibria exist if announce fixed number of badges, rather than fraction
 - Partial equivalence between \mathcal{M}_{α} and \mathcal{M}_{ρ}^{p} ; includes optimal effort point
 - $\bullet~\mathcal{M}_{\alpha}$ less 'robust' than \mathcal{M}_{ρ} to uncertainty about population
- Externalities: Endogenously determined badge valuations

Some answers: II

- Multiple 'absolute standards' badges [Anderson et al'13]
 - Single action: What levels to reward to sustain effort?
 - Multiple actions: How to steer user behavior?
- Model: Multi-dimensional space of action types
 - Users incur cost to actions differing from 'preferred' distribution over actions
 - Time-discounted value to winning badges
 - Effort choice depends significantly on badge 'placement'
 - 'Spread out' multiple badges with roughly equal values

Games of status

- Reward mechanisms when users only care about status [Dubey-Geanakoplos'09]:
 - *N* agents each receive a grade
 - Utility from status:# with strictly lower # with strictly higher grade
 - Output is noisy perturbation of input effort
 - What scheme incentivizes maximum effort from every agent?
- Main results:
 - Optimal grading scheme not 'perfectly fine': Coarsening improves effort
 - Absolute grading dominates grading on a curve
- Models, mechanisms: Status and social computing

• Frequency of contribution

Frequency of contribution

- Game-theoretic model for education forums (Piazza, MOOCs) [Ghosh-Kleinberg'13])
- Strategic choice: Rate of participation
- Cost to rate; benefit from timely contribution

Frequency of contribution

- Game-theoretic model for education forums (Piazza, MOOCs) [Ghosh-Kleinberg'13])
- Strategic choice: Rate of participation
- Cost to rate; benefit from timely contribution
- Reputation as reward for overall contribution:
 - Incentivizing quality: Reputation as input to learning algorithm
 - Participation: Update rules to elicit frequent contribution

Frequency of contribution

- Game-theoretic model for education forums (Piazza, MOOCs) [Ghosh-Kleinberg'13])
- Strategic choice: Rate of participation
- Cost to rate; benefit from timely contribution
- Reputation as reward for overall contribution:
 - Incentivizing quality: Reputation as input to learning algorithm
 - Participation: Update rules to elicit frequent contribution
- Sustaining contribution:
 - Model for contributor interest over time
 - Mechanisms to incentivize sustained contribution

(More) open directions

- More nuanced models of quality, output:
 - Vertical and horizontal differentiation [MacKie Mason'09], diversity
 - Modeling value from set of contributions
- Incentives for production with strategic ratings
- Overall contributor reward design
 - So far: Simple models, reward structures
 - Leaderboard design: Unequal rewards to winners

[Ghosh'13: Game Theory and Incentives in Human Computation]

• Different participant roles (contribution, moderation, ...)

- Interaction between role-specific incentives
- Endogenous ability-based selection into roles

[Ghosh'13: Game Theory and Incentives in Human Computation]

- Different participant roles (contribution, moderation, ...)
 - Interaction between role-specific incentives
 - Endogenous ability-based selection into roles
- Mixed incentives:
 - How do users cumulatively value, tradeoff differing incentives?
 - Models, mechanism design

[Ghosh'13: Game Theory and Incentives in Human Computation]

- Different participant roles (contribution, moderation, ...)
 - Interaction between role-specific incentives
 - Endogenous ability-based selection into roles
- Mixed incentives:
 - How do users cumulatively value, tradeoff differing incentives?
 - Models, mechanism design
- *Behavioral economics*: User valuations of social-pyschological rewards
 - 'Shape' of reward functions: Marginal benefits (attention, ...)
 - Value from set of rewards
 - How do rewards retain value over time?