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Abstract

Charitable giving is influenced by many social, psycho-
logical, and economic factors. One common way to en-
courage individuals to donate to charities is by offering
to match their contribution (often by their employer or
by the government). Conitzer and Sandholm introduced
the idea of using auctions to allow individuals to offer
to match the contribution of others. We explore this
idea in a social network setting, where individuals care
about the contribution of their neighbors, and are al-
lowed to specify contributions that are conditional on
the contribution of their neighbors.

We give a mechanism for this setting that raises
the largest individually rational contributions given the
conditional bids, and analyze the equilibria of this mech-
anism in the case of linear utilities. We show that if the
social network is strongly connected, the mechanism al-
ways has an equilibrium that raises the maximum total
contribution (which is the contribution computed ac-
cording to the true utilities); in other words, the price of
stability of the game defined by this mechanism is one.
Interestingly, although the mechanism is not dominant
strategy truthful (and in fact, truthful reporting need
not even be a Nash equilibrium of this game), this result
shows that the mechanism always has a full-information
equilibrium which achieves the same outcome as in the
truthful scenario. Of course, there exist cases where the
maximum total contribution even with true utilities is
zero: we show that the existence of non-zero equilib-
ria can be characterized exactly in terms of the largest
eigenvalue of the utility matrix associated with the so-
cial network.

1 Introduction

Charitable giving constitutes an essential and growing
part of the world economy, providing benefits such as
helping people overcome natural disasters, reducing in-
come inequality, and funding public projects. According
to the Giving USA survey [13], charitable giving in the
United States totaled over $295 billions in year 2006,
over 2.7% of the total personal income. The vast ma-
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jority of this sum is donated by individuals, and only
a small portion (1.3%) is from mega-gifts that receive
media attention.

Reasons why individuals donate to charities, and
ways to encourage such donations, have been the subject
of extensive research; see [1, 19] for surveys. These
reasons include social, psychological, and economic
factors. One of the common techniques governments or
employers use to encourage donations from individuals
is by increasing the benefit of a donation through gift-
matching programs. Experimental and field studies
have shown that offering to match the contribution of
a donor in fact has a significant effect on the likelihood
and the amount of a donation [10, 15].

Conitzer and Sandholm [6] introduced the idea of
charity auctions in which each bidder declares how much
she is willing to contribute as a function of the total con-
tribution from all donors. This allows individual donors
to offer to match the contribution of others, providing
them with the same added incentive as a government
or employer-sponsored matching-gift program. Conitzer
and Sandholm consider the problem in its most gen-
eral form with donations to multiple charities, where
the auction mechanism acts as a platform for negotia-
tion among bidders about how much to give as well as
to which charities. In this setting, they prove strong
hardness results on the clearing problem the auction
mechanism needs to solve. As we will observe later in
this paper, these hardness results are a consequence of
the combinatorial nature of the problem with multiple
charities, and do not apply to the case of a single charity
campaign, which is the focus of this paper.

An implicit assumption in the model considered by
Conitzer and Sandholm is that individuals only care
about the total amount donated to the charity, and
not on where this donation comes from. However,
empirical evidence suggests that charitable giving is
highly influenced by contributions from one’s social
circle (see, for example, [5]). In fact, the Giving USA
survey [12] finds that the most important reason that
people give for making contributions is being asked to
give by someone they know well. Motivated by these
observations, we study charity auctions among bidders
on a social network, where each bidder can condition his



or her contribution on the contribution of her neighbors.
We observe that in this setting (which will be

defined in further detail in Section 2) there is a unique
maximal feasible payment vector. This follows from
the fact that feasible payment vectors correspond to
fixed points of an increasing function on a lattice.
This results in a natural clearing mechanism for the
auction, which, as we will observe, can be computed
efficiently. The main technical contribution of our
paper is the analysis of full-information equilibria of
this mechanism, assuming the agents have linear utility
functions and a budget (which we will argue is a
reasonable assumption).

We show that this mechanism always has an equi-
librium which results in the optimal outcome, assum-
ing that the underlying social network is strongly con-
nected. Here, by optimal we mean the outcome that
yields the highest total contribution subject to individ-
ual rationality constraints. In other words, the price
of stability of the game defined by this mechanism is
one.1 It is worth noting that this mechanism is not
dominant strategy truthful, and in fact, truthful report-
ing need not even be a Nash equilibrium for this game,
yet our result shows that the mechanism always has
a full-information equilibrium which achieves the same
outcome as in the truthful scenario.

A natural question is how the topology of the under-
lying social network impacts the success of a fundrais-
ing campaign. Using our result about the existence of
optimal equilibria, we give a characterization of utility
profiles that admit a non-zero equilibrium. Our charac-
terization is in terms of the largest eigenvalue of the util-
ity matrix associated with the social network- we show
that non-zero contributions can be raised in equilibrium
if and only if the largest eigenvalue of this matrix is at
least 1.
Related work. The closest paper in the literature
to our work is that of Conitzer and Sandholm [6],
which defines the notion of a charity auction and
studies the computational complexity of the clearing
problem for such auctions. There has been plenty of
work, both theoretical and experimental, on charity in
the economics literature, see for example the survey
papers by Andreoni [1] and Vesterlund [19]. From the
mechanism design standpoint, the relevant literature
is that on the private provision of public goods. In
particular, Guttman [8] and Varian [17, 18] study
mechanisms that are based on a notion of subsidy.
Bagnoli and Lipman [4] gives a simple social-welfare

1Note that in all interesting cases, this game has an equilibrium
in which everybody donates 0. Therefore, one cannot hope to

prove a similar statement for the worst equilibrium of the game.

maximizing mechanism for provision of public goods.
However, the models and the mechanisms considered in
these paper are different from ours. In particular, none
of these papers consider a social network setting.

There have been a number of relevant field and labo-
ratory experiments as well. Karlan and List [10] report a
field experiment examining the effect of matching funds
on charitable contributions, and find that matching con-
tributions increase both the likelihood and amount of a
donation. Carmen [5] studies the role of social influ-
ence in the workplace on the choice of charitable or-
ganizations to receive one’s donations, and finds that
the designation of an individual gift is affected by so-
cial influences. Rege and Telle [14] and Andreoni and
Petrie [3] show in laboratory studies that revealing the
identities of givers and amounts contributed can have
positive impact on donations; similar social effects are
shown in a field experiment by Soetevent [16]. Eckel and
Grossman [7] compare the effect of rebates and match-
ing mechanisms in a fundraising campaign and show
that matching mechanisms result in larger total contri-
butions.

2 The model

In its most general form, the setting of a single-charity
fundraising campaign can be described as follows: each
of the n participating agents has a utility function ui

for donations to charity. This function maps a vector x
in Rn, where x is the profile of contributions from all
agents (including i), to a number ui(x) indicating how
much agent i values this profile. We assume that ui is
a non-decreasing function of xj for every j 6= i, and a
non-increasing function of xi.

Throughout most of this paper, our focus is on the
case where the utility function of each agent is a linear
function of the contributions from the neighbors of this
agent in an underlying social network, subject to a hard
budget constraint. More precisely, we assume there is a
directed graph G with agents as its vertices. An agent’s
type is specified by a non-negative row vector Ai = (aij)
where aij > 0 if and only if (i, j) ∈ E(G), and a budget
Bi. The overall utility of agent i is given by

(2.1) ui(x) =
{ ∑

j aijxj − xi if xi ≤ Bi

−∞ otherwise.

A special case of this model which is easier to under-
stand and captures the main properties of the model
is when utility functions are a function of the total
contribution from neighbors in the social network (i.e.,
not weighted differently for different neighbors): in this
case, the type of each agent i is specified by two non-
negative numbers ai and Bi. The value of agent i for a



contribution profile x ∈ Rn (not counting the disutility
caused by having to pay xi) is given by ai

∑
j∈N(i) xj ,

where N(i) denotes the set of nodes j that have an edge
from i ((i, j) ∈ E(G)). The overall utility of this agent
can be written as

ui(x) =
{
ai

∑
j∈N(i) xj − xi if xi ≤ Bi

−∞ otherwise.

Some of our results hold even for more general utility
functions and budget constraints (an important excep-
tion, which will be noted later, is the result of Section 4
which, as we will observe, does not hold if utility func-
tions are non-linear).

Before defining the notion of a charity auction, we
elaborate on the three assumptions we are making in
this model:

• Utilities are linear. In general, one might
expect the utility function of an agent to be a
concave function of the contribution of others, since
the marginal benefit of additional donations should
eventually decrease as the amount of collected
funds goes to infinity. However, in most fundraising
campaigns, the donation of each individual (or a
small group of individuals) is quite small compared
to the total amount collected. Therefore, it is
reasonable to assume that the marginal benefit
of additional donations is almost constant in the
relevant range. Furthermore, from a practical
point of view, having to specify a non-linear utility
function increases the cognitive burden of bidding
in the auction, making it hard for non-sophisticated
users to participate in the auction, while linear
utility functions correspond to the familiar notion
of gift-matching.2

• Donations are limited by budget constraints.
Clearly, individuals are constrained by their budget
when deciding how much to donate to each char-
ity. One might argue that these budget constraints
are often flexible to some degree. A more general
model, used by Conitzer and Sandholm [6], con-
siders a donation willingness function w : R 7→ R,
which maps the utility the agent receives from the
contribution profile to the maximum amount she
is willing to donate. However, specifying such a

2A web-based system based on the model described in this

section is currently implemented and will be made publicly

available soon. In this system, a user can start a new campaign,
participate in an existing campaign by specifying her budget and

the amount of matching funds she is willing to provide for every

dollar contributed by her friends, or invite new friends to join the
campaign.

function seems to be too difficult to be practical.
Furthermore, without any constraint on the func-
tion w, the utility loses its meaning, and therefore
it is impossible to prove any general result on the
equilibrium properties of the mechanism.

• Single charity campaign. We assume in our
model that the fundraising campaign concerns only
one charity (or a set of charities that are all equally
acceptable from the agents’ point of view). Again,
the first reason for this assumption is to make it
easier for the agents to participate in the campaign.
Also, the results of Conitzer and Sandholm [6] show
that if multiple charities are considered, most prob-
lems become computationally intractable, even ig-
noring the social network aspect of the problem.

We now formally define a charity auction.
Charity auctions. A charity auction is a mechanism
that elicits from each agent her private type (Ai, Bi),
and based on these values, outputs a contribution
profile. More generally, the mechanism asks each bidder
i for a willingness-to-pay function vi : Rn 7→ R, which
specifies the maximum amount this agent is willing to
pay at each contribution profile; in other words, by
bidding vi, bidder i declares a contribution profile x
as acceptable from her point of view if xi ≤ vi(x).3 In
the case of linear utilities with budgets, we can take
vi(x) = min(Bi,

∑
j aijxj). It is easy to see that since

the utility function ui(x) was assumed to be a non-
decreasing function of xj (j 6= i), we can restrict vi to
be a non-decreasing function in all xj ’s. Furthermore,
we assume that each vi is a bounded function.4

A feasible outcome is a vector x ∈ Rn such that
for each i, xi ≤ vi(x). A mechanism satisfies individual
rationality if it always outputs a feasible contribution
profile.

A special case of our model, which will receive
special treatment, is when the graph G is complete (i.e.,
for every i and j, (i, j) ∈ E(G)). Note that this is also
a special case of the model considered by Conitzer and
Sandholm [6], since in this case the utilities only depend

3Note that while conceptually it is more natural to restrict the
willingness-to-pay function vi to be a function of the contribution

profile x−i of other agents, for the sake of simplicity we allow vi to

depend on xi as well. This only simplifies the math, and does not
change the expressiveness of the bidding language. For example,
in the case of linear utilities (with aii < 1), taking vi(x) =

min(Bi,
∑

j aijxj) and vi(x) = min(Bi,
1

1−aii

∑
j 6=i aijxj) both

lead to the same set of acceptable profiles from the point of view

of i.
4However, we do not assume that the auctioneer knows the

bound on vi’s.



on the total donation to the charity. In Section 4 we first
prove our result in this special case, since in this case
exact equilibrium conditions can be written explicitly,
providing intuition for the proof of the more general
case.

3 The mechanism

Recall that a charity auction mechanism needs to
compute a feasible payment vector x given non-
decreasing functions vi : Rn 7→ R (where vi(x) =
min(Bi,

∑
j aijxj) in our model). Moreover, since of-

ten there are many feasible payment vectors (e.g., 0 is
always feasible), the mechanism must output a feasible
payment vector that maximizes some natural objective
function, such as the total contribution

∑
i xi. The fol-

lowing lemma shows that there is a unique maximal fea-
sible payment vector. This vector clearly maximizes the
total contribution and any other non-negative objective
function. In the following lemma, for vectors x,y ∈ Rn,
max(x,y) denotes a vector in Rn whose i’th coordinate
is max(xi, yi). Also, by x ≤ y we mean xi ≤ yi for
every i.

Lemma 3.1. For every two feasible payment vectors
x,x′ ∈ Rn, max(x,x′) is also a feasible payment vector.
Therefore, there is a unique feasible payment vector x∗

such that x ≤ x∗ for every feasible payment vector x.

Proof. Let y = max(x,x′) for two feasible payment
vectors x and x′. By feasibility of x,x′, we have
xi ≤ vi(x) and x′i ≤ vi(x′) for every i. Since vi is non-
decreasing and x ≤ y, we obtain xi ≤ vi(x) ≤ vi(y).
Similarly, x′i ≤ vi(y). Hence, yi = max(xi, x

′
i) ≤ vi(y).

Note that the above proof works not only for the
maximum of two feasible vectors, but also for the
supremum of any set of feasible vectors. Therefore, if
we let x∗ denote the supremum of all feasible vectors
(this vector is well defined since vi’s are bounded and
therefore the set of feasible vectors is a bounded subset
of Rn), by this argument x∗ is a feasible payment vector,
and by definition, x ≤ x∗ for every feasible payment
vector x. �

An alternative way to prove the above lemma is to
note that the maximal feasible point x∗ corresponds to
the maximal fixed point of a non-decreasing function
on the lattice Rn, and then use Tarski’s fixed point
theorem to show that such a fixed point always exists
and is unique. We will use this interpretation later in
the paper (in the proof of Theorem 4.2) in order to apply
comparative statistics theorems on Tarski fixed points.

Given the above result, the mechanism can simply
elicit vi’s and output the unique maximal feasible vector

with respect to these functions.
Computation of the outcome. When utility
functions are linear, the maximal feasible vector can be
computed in polynomial time by solving the following
linear program.

maximize
∑

i

xi

subject to ∀i : xi ≤
∑

j

aijxj

∀i : xi ≤ Bi

An alternative approach for computing the maximal
feasible vector is to start from x(0) = (B1, . . . , Bn),
and iteratively define x

(k)
i = min(x(k−1)

i , vi(x(k−1)))
for every i, k. This algorithm always converges to the
solution x∗, as long as the functions vi are continuous.
However, this procedure might take infinite time to
converge. In the case of linear utilities, this algorithm
can be made more efficient as follows: in every step k,
let Sk = {i :

∑
j aijx

(k−1)
j < Bi}, and solve a system

of linear equations to find x(k) satisfying x
(k)
i = Bi

for all i 6∈ Sk and x
(k)
i =

∑
j aijx

(k)
j for all i ∈ Sk.

It is straightforward to show that in each iteration, if
x(k) 6= x(k−1), the size of Sk increases by at least one.
Therefore, the algorithm computes the solution after
solving at most n systems of linear equations.

4 Equilibrium analysis

In this section, we consider the strategic behavior of the
agents in a charity auction. The mechanism defined in
the previous section induces the following game among
the bidders: each agent reports a tuple (A′i, B

′
i) as her

type. The outcome of the charity auction is the vector
of payments x = P (A′, B′) as defined in the previous
section. Given this outcome, agent i derives a utility
of
∑

j aijxj − xi if xi ≤ Bi and −∞ otherwise. We
are interested in studying full-information equilibria of
this game, i.e., a set of bids (A′, B′) such that even
knowing other agents’ bids, no agent has an incentive to
change her bid. The main result of this section is that
this game always has an equilibrium which yields the
same payment vector x as the payment vector P (A,B)
with respect to the true types. It is easy to see that
this is the highest total contribution one might hope
to achieve subject to individual rationality. For this
reason, we call this outcome the optimal outcome. Note
that the optimal outcome is not necessarily the same
as the social-welfare maximizing outcome, if we define
the social welfare as the sum of the utilities of the



bidders5. Since our model is motivated by charities that
use the donations to improve the well-being of others
(not just the contributors), the total contribution is a
more reasonable objective function than the sum of the
utilities of the bidders.

We first study this problem in the special case where
the graph G is complete (Section 4.1). In this case,
the utility of agent i is aiX − xi if xi ≤ Bi, where
X :=

∑
j xj is the total contribution of all agents. We

give a characterization of the equilibria in this special
case, providing the intuition for the proof of the more
general case, which will be presented in Section 4.2.

4.1 The case of complete graph

Let H denote the game defined by our charity mech-
anism where the type of agent i is (ai, Bi). Consider
a full-information equilibrium of this game, and let
(a′i, B

′
i) denote the bid of agent i at this equilibrium

and x = P (a′, B′) be the resulting payment vector. In
this section, we give conditions that characterize such
equilibria and the associated payment vector. The first
step is to prove that for each agent i, in order to decide
if (a′i, B

′
i) is a best-response to the strategy of other

agents, it is enough to only look at the final payment
xi of this agent. This is an important step in the proof,
and also in the proof of the general case: analyzing equi-
libria of mechanisms in which the type of each agent is
multi-dimensional is known to be notoriously difficult;
in our setting, while the type of each agent is multi-
dimensional, this lemma allows us to focus on only one
relevant parameter, xi.

To state the lemma, we define a modified game H ′

in which agents j 6= i submit bids (a′j , B
′
j) as before, but

agent i has to submit a value z. The mechanism then
computes the payment vector x using the mechanism
described in Section 3, but with the functions vi defined
as the constant function vi(x) = z (other vj ’s are defined
as before: vj(x) = min(B′j , a

′
jX)). In other words, in

this game agent i reports her unconditional payment z.
Let P (z, a′−i, B

′
−i) denote the outcome of this game.

Lemma 4.1. Let (a′, B′) be a set of bids, and denote
x = P (a′, B′). Then (a′i, B

′
i) is a best-response to the

strategy profile (a′−i, B
′
−i) in the game H if and only

if xi is the best-response to this strategy profile in the
game H ′.

Proof Sketch. By the definition of the mechanism
in the previous section, it is not hard to see that

5An exception is the case of a complete graph. It is not hard

to prove that in this case the optimal outcome coincides with the
social-welfare maximizing outcome.

P (xi, a
′
−i, B

′
−i) = x. Let z denote i’s best-response to

the strategy profile (a′−i, B
′
−i) in the game H ′, and let

y := P (z, a′−i, B
′
−i). Note that z = yi ≤ Bi. We define

a′′i := yi/Y , where Y =
∑

j yj . It is straightforward
to show that y = P ((a′′i , Bi), a′−i, B

′
−i), i.e., if i bids

(a′′i , Bi) in the game H, the outcome of the game will be
y. This means that if i’s best-response z in the game H ′

is different from xi, then there is also a strategy (a′′i , Bi)
in the game H which performs better than (a′i, Bi), and
hence (a′i, Bi) cannot be a best response. The other
direction is proved similarly. �

Next, we give necessary and sufficient condition for
an unconditional payment to be the best-response in the
game H ′.

Lemma 4.2. The strategy xi is the best-response to
the strategy profile (a′−i, B

′
−i) in the game H ′ if the

following conditions hold:

xi = Bi ⇒ ai +
∑

j∈S+\i

a′j ≥ 1,

xi < Bi ⇒ ai +
∑

j∈S+\i

a′j ≥ 1 and

ai +
∑

j∈S−\i

a′j ≤ 1,

where x = P (xi, a
′
−i, B

′
−i), X =

∑
j xj, S− = {j :

a′jX < B′j}, and S+ = {j : a′jX ≤ B′j}.

Proof. We need to argue that with the above
conditions, bidder i cannot benefit by changing her
bid from xi. If xi = Bi, then i can only decrease
his bid. Consider the utility function ui = aiX − xi

of i only as a function of xi, holding the values of
(a′−i, B

′
−i) constant. We compute the left derivative of

this function at xi. Let C = xi +
∑

j /∈S+ B′j . Then,
since x = P (xi, a

′
−i, B

′
−i), for every j ∈ S+ \ i we have

xj = a′j · (
∑

k∈S+\i

xk + C).

Summing over all j ∈ S+ \ i and denoting x(S+ \ i) :=∑
j∈S+\i xj and a′(S+ \ i) :=

∑
j∈S+\i a

′
j , we obtain

x(S+ \ i) = a′(S+ \ i) · (x(S+ \ i) + C)

Therefore,

X = x(S+ \ i) + C

=
C

1− a′(S+ \ i)

=
xi +

∑
j /∈S+ B′j

1− a′(S+ \ i)
.



The above equation gives the value of X as a function
of xi. It is easy to see that the above equation holds
not only at xi, but also on a left neighborhood of xi.
Therefore, the left derivative of X with respect to xi is
1/(1−a′(S+ \ i)). Thus, the left derivative of the utility
function ui = aiX − xi of agent i with respect to xi is
ai/(1 − a′(S+ \ i)) − 1. To ensure that agent i cannot
benefit by decreasing her bid, this left derivative must
be nonnegative:

ai

1− a′(S+ \ i)
− 1 ≥ 0,

which we can rearrange to get the first condition. Note
that we only need to consider the slope at xi, since ui

is a piecewise linear concave function, and the slope at
lower xi can only increase (since the set S+ can only
grow larger when payments decrease).

A bidder with xi < Bi can either increase or
decrease his payment; the condition to have no incentive
to decrease his bid is that the left derivative of the
utility function at xi is nonnegative, which is the same
as above. Using a similar argument, such an i will not
increase his bid if the right derivative of the utility at
xi is non-positive; this works out to

ai

1− a′(S− \ {i})
− 1 ≤ 0,

where a′(S−\{i}) =
∑

j∈S−\i a
′
j . Again, as xi increases,

S− shrinks, and the slope can only decrease, so it is suf-
ficient to check the right derivative at xi. Rearranging,
we get the second condition. �

Now we use these two lemmas to characterize the
set of payment vectors which can be outcomes in a Nash
equilibrium of the charity auction.

Theorem 4.1. Consider the game H with agent types
(a,B), and let x ∈ Rn and X =

∑
j xj. There exists a

full-information Nash equilibrium of the this game with
the outcome x if the following conditions hold.

∀ i :
xi

X
≤ ai,(4.2)

∀ i s.t. xi < Bi :
∑
j:j 6=i

xj<Bj

xj

X
≤ 1− ai,(4.3)

∃ i s.t. xi = Bi.(4.4)

Proof. Let a′i = xi/X for all i. We claim that if
the above conditions are satisfied, (a′, B) constitute a
Nash equilibrium of H with the outcome x. First we
show that x = P (a′, B). By the definition of a′i’s, x is
a feasible payment vector for (a′, B); we need to show
it is a maximum feasible solution. Let y = P (a′, B)

be the maximum feasible solution and assume Y =∑n
i=1 yi > X. By the feasibility of y, for every i we

have yi ≤ a′Y = xiY/X. Furthermore, by the above
conditions there exists at least one i such that xi = Bi.
For this i, we have yi ≤ Bi < xiY/X. Therefore,

Y <

n∑
i=1

xi

X
Y = Y,

which is a contradiction. Therefore x must be the
maximum feasible outcome at (a′, B).

Next, we use Lemma 4.2 to show that for every i, xi

is the optimal unconditional payment given (a′−i, B−i),
and therefore (a′, B) is an equilibrium. By the definition
of a′i’s, S

+ is the set of all bidders, and S− = {j : xj <
Bj}. Since a′j = xj/X,

∑n
j=1 a

′
j = 1, and the first

condition on the bids reduces to

a′i =
xi

X
≤ ai

for all i, which is true by condition (4.2). For i such
that xi < Bi, the second condition for not having an
incentive to deviate from his payment reduces to∑

j∈S−\i

xj

X
≤ 1− ai,

which is true by condition (4.3). This shows that the
strategy profile (a′, B) is in fact a Nash equilibrium of
the game. �

Corollary 4.1. There exists a set of bids (a′, B′)
which are a Nash equilibrium, and achieve the optimal
outcome x = P (a,B).

Proof. Conditions (4.2) and (4.4) in Theorem 4.1 are
satisfied since x = P (a,B) is the maximum feasible pay-
ment. To verify condition (4.3), let X− :=

∑
j:xj<Bj

xj .
We have xi = aiX for every i such that xi < Bi. Sum-
ming up these equations, we obtain

X− = (
∑

i:xi<Bi

ai)(X− +
∑

i:xi=Bi

Bi),

Since there is at least one i with xi = Bi, the above
equation cannot be satisfied unless∑

i:xi<Bi

ai < 1.

Since xj

X ≤ aj for all j, the above inequality implies

ai +
∑

j:j 6=i,xj<Bj

xj

X
< 1



for every i. Therefore, condition (4.3) is satisfied. �

The above corollary shows that our mechanism has
an equilibrium which extracts the maximum possible
revenue of all individually rational mechanisms: the
outcome x of any individually rational mechanism must
satisfy ui(x) ≥ 0, i.e., xi ≤ aiX, and xi ≤ Bi.
Therefore, any such x will be a feasible vector with
respect to the true (a,B), and hence, by definition,
x ≤ P (a,B).

4.2 General networks with linear utilities

Now we consider general linear utility functions, i.e.,
when the underlying graph on the set of bidders need
not be a complete graph. In this case, a bidder’s bid
is a row vector A′i = (a′i1, a

′
i2, . . . , a

′
in) and a budget

B′i, which are used to calculate his payments. We
investigate the question of whether the optimal outcome
(i.e., the payments computed from the true values) can
be supported in an equilibrium. In other words, we
would like to know whether for every utility profile
(A,B), there exits bids (A′, B′) that form a Nash
equilibrium and satisfy P (A′, B′) = P (A,B).

Before we state our results, we state the following
theorem about non-negative matrices, which we will use
in our proofs.

Theorem A. ([9],Theorem 8.3.3) Let A be a non-
negative n × n matrix. The eigenvalue of A with the
largest magnitude, λmax, is real, and there is a non-
negative vector x ≥ 0, x 6= 0, such that Ax = λmaxx.
Further,

λmax = max
x≥0,x 6=0

min
1≤i≤n,xi 6=0

1
xi

n∑
j=1

aijxj .

The eigenvalue λmax is referred to as the Perron-
Frobenius eigenvalue of the non-negative matrix A.

Theorem 4.2. The optimal outcome x = P (A,B) can
be supported in an equilibrium if the underlying graph
of A is strongly connected.

Proof Sketch. The payment of bidder i in the optimal
outcome satisfy xi = min(AT

i x, Bi). Define the matrix
A′ as

a′ij = aij
xi∑

j∈N(i) aijxj
,

where x is the payment vector according to the true
utilities. We claim that the strategy profile (A′, B) is
an equilibrium of the game, and the outcome of the
mechanism at this strategy profile is x.

First we show that P (A′, B) = x. Clearly x is
a feasible payment vector with respect to (A′, B), so
x ≤ P (A′, B); we only need to show it is the maximum
feasible vector. To show this, we use the observation
that the outcome P (A′, B) of the mechanism is the
maximal fixed point of the function v that maps any
vector y ∈ Rn to the vector (v1(y), . . . , vn(y)), where
vi(y) = min(Bi, A

′
i
T
y). This function is an isotone

function on the lattice Rn, and it is not hard to show
that its largest fixed point corresponds to the outcome
P (A′, B). Furthermore, note that the function vi is
an increasing function of each a′ij . Thus, by the
comparative statics theorem of [11], increasing the value
of a′ij increases the value of P (A′, B). Therefore, since
for every i and j, a′ij ≤ aij , we have P (A′, B) ≤
P (A,B) = x.

Next, we prove that (A′, B) is an equilibrium. An
argument similar to the one in Lemma 4.1 shows that a
bidder k has no incentive to unilaterally deviate from
his bid (A′k, Bk) if the corresponding payment xk is
his optimal unconditional payment given other bidders’
bids.

Now consider a particular bidder k. First note
that this bidder has no incentive to increase his un-
conditional payment, since xk is the maximum indi-
vidually rational payment (no larger payment satisfies
xk ≤ min(AT

k x, Bi), since x is computed using the true
utilities A by P ). Now we show that there is no incen-
tive to decrease the unconditional payments. Permute
and partition the matrix A′ as

A′ =
[
A′

+
b′k

a′k
T

a′kk

]
,

where A′+ is the n−1×n−1 submatrix of A′ removing
the kth row and column, and b′k is the kth column of
A′. We will show in Lemma 4.3 that the matrix I−A′+
is invertible when G is strongly connected.

Consider an arbitrary unconditional payment yk ≤
xk by bidder k, and let y−k be the vector of payments of
all other agents computed according to A′+. We want
to find the condition under which yk is a best response
to A′+. For all bidders j 6= k we have A′jx = xj ≤ Bj .
Therefore, all such bidders must satisfy A′jy ≤ Bj and
hence yj = A′jy. Therefore, the payments of bidders
other than k for all yk ≤ xk can be calculated as

(4.5) y−k = A′
+y−k +ykb

′
k ⇒ y−k = yk(I−A′+)−1b′k.

The utility of bidder k is∑
j∈N(k)

akjyj − yk,



where akjs are entries from the true matrix A.
The condition for bidder k to not decrease his

payment is that the left-derivative of his utility at xk

is nonnegative, which we can write using (4.5) as

aT
k (I −A′+)−1b′k + akk − 1 ≥ 0.

Since (I − A′+)−1b′k = (1/xk)x−k, the condition under
which xk is the optimal payment given the remaining
bids is

(4.6) aT
k x−k + akkxk ≥ xk.

Since the payment vector x is feasible with respect to
(A′, B), we have

xk ≤ a′k
T x−k + a′kkxk.

This, combined with the inequality a′ij ≤ aij for
every i, j, implies (4.6), completing the proof of the
theorem. �

The only remaining step is the following lemma.

Lemma 4.3. The matrix I −A′+ is non-singular if the
graph underlying A is strongly connected.

Proof Sketch. First we show that λmax(A′) = 1.
Let λ be the largest eigenvalue of A′, with associated
nonnegative (from Theorem A) eigenvector A′y = λy.
Note that yi = 0 if xi = 0, since if xi = 0, the entire ith
row of A′ is zero. From the definition of A′ and y, we
have

yi

xi
=

1
λ

a′i
T
y

a′i
Tx
≤ 1
λ

max
j∈N(i)

yj

xj
,

which leads to a contradiction for bidder i with
max yi/xi if λ > 1. Since we know that A′x = x, 1
is an eigenvalue of A′, and so the largest eigenvalue.

Since A′+ is a principal submatrix of the nonnega-
tive matrix A, λmax(A′+) ≤ λmax(A′) = 1 ([9], Corol-
lary 8.1.20). If I − A′

+ is singular, there exists z
such that A′+z = z, where z ≥ 0, since from Theo-
rem A there is a nonnegative vector corresponding to
the largest eigenvalue. Thus z satisfies

zi =
∑

j∈N(i)\k

zj
xi∑

j∈N(i) xj

⇒ zi

xi
≤

∑
j∈N(i)\k zj∑
j∈N(i)\k xj

≤ max
j∈N(i)\k

zj

xj
,

where the inequality is strict when k ∈ N(i). Choose
bidder i with max zi/xi; by the above inequality, all
j ∈ N(i) must have this same value of zj/xj , and so on;

this leads to a contradiction since the inequality must
be strict for a bidder with k ∈ N(i), and we will reach
such a bidder since the graph is strongly connected. So
such a z cannot exist, i.e., I −A′+ is non-singular. �

Example. The following simple example shows that
the conclusion of Theorem 4.2 (or even Corollary 4.1)
need not be true when the utilities of the agents are
non-linear. Assume there are two agents, each with
a willingness-to-pay function of 2 − 2/(X + 1), where
X = x1 + x2 is the total contribution. It is easy to
see that with the truthful reporting of these functions,
the outcome will be x = (1.5, 1.5), resulting in a
utility of 0 for both agents. However, no matter how
much the bid of the second agent is, the first agent
can derive a positive utility by contributing, say 0.5.
Therefore, the outcome (1.5, 1.5) cannot be supported
as an equilibrium.

5 Characterization of successful campaigns

In this section, we characterize utility profiles for which
the mechanism succeeds in collecting a non-zero amount
from the agents. Recall that the utility of an agent i
can be given by the values aij and Bi. The values aij

constitute the i’th row of a matrix A. Denoting this
row by Ai, the utility function of the i’th agent can
be written as ui(x) = AT

i .x − xi for xi ≤ Bi. Our
characterization is in terms of the eigenvalues of the
matrix A.

By the result of the previous section, in order to
show that the mechanism has an equilibrium with non-
zero total contribution, it is enough to show that the
payment vector P (A,B) corresponding to agents’ true
types is non-zero.

Theorem 5.1. The payment vector x = P (A,B) is
non-zero if and only if the matrix A of reported utilities
is such that λmax(A) ≥ 1.

Proof. The payment vector is the maximum feasible
solution of xi ≤ min(AT

i x,Bi). First, note that since A
is a nonnegative matrix, λmax is real and there exists a
nonnegative eigenvector v, from the Perron-Frobenius
theorem. Sufficiency is easy: If Av = λmaxv, with
λmax ≥ 1, then x = αv is a feasible nonzero vector of
payments for sufficiently small α (chosen to satisfy the
budget constraint xi ≤ Bi). So there exists a non-zero
feasible payment vector, which means the maximum
feasible vector computed by the mechanism is non-zero
as well, i.e., has non-zero total contribution.

For necessity, we will use max-min characterization



of the Perron-Frobenius eigenvalue from Theorem A:

λmax(A) = max
x≥0,x 6=0

min
xi 6=0

(Ax)i

xi
.

Therefore, if λmax < 1, there is no nonzero, nonnegative
solution to x ≤ Ax, which means the maximum feasible
solution is 0. �

The above theorem implies the following corollary
in the case of complete graphs. It is also straightforward
to prove this corollary directly.

Corollary 5.1. When utilities are ui(x) = aiX − xi

where X is the sum of all payments, the vector of
payments is nonzero if and only if

∑n
i=1 ai ≥ 1.

Proof. The eigenvalues of A, which has identical
columns (a1, . . . , an), are λmax =

∑n
i=1 ai, and λ2 =

. . . = λn = 0 repeated n − 1 times; using the theorem
above gives this condition. �

6 Conclusion

In this paper, we defined and studied charity auctions
on social networks, and showed that such auctions
can achieve an optimal outcome in a full-information
Nash equilibrium. We also gave a characterization of
campaigns that can raise a non-zero amount in terms
of a matrix property of a utility matrix. There are
still many interesting open questions related to charity
auctions; for example,

• More than one charity: One of the assumptions
of our model was that the charity campaign con-
cerns only one charity. It would be interesting to
generalize this to a setting where multiple charities
compete for contributions of the agents.

• Signaling: What is the role of the social network
and matching contributions in signaling informa-
tion about the quality of a charity? A related pa-
per is the one by Andreoni [2] which studies the role
of leadership giving in signaling information about
the quality of a charity.

• Dynamics: We proved that our auction mecha-
nism can support the optimal outcome in an equi-
librium. However, this mechanism has multiple
equilibria, and some of them are far from optimal.
It would be interesting to study which of these equi-
libria will be selected under reasonable assumptions
about the dynamics of the game. Can the auction-
eer lead the system toward a good equilibrium by
announcing or withholding selected pieces of infor-
mation at various stages of the game?
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