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ABSTRACT
Contests are widely used as a means for effort elicitation
in settings ranging from government R&D contests to on-
line crowdsourcing contests on platforms such as Kaggle,
Innocentive, or TopCoder. Such rank-order mechanisms—
where agents’ rewards depend only on the relative ranking
of their submissions’ qualities—are natural mechanisms for
incentivizing effort when it is easier to obtain ordinal, rather
than cardinal, information about agents’ outputs, or where
absolute measures of quality are unverifiable. An increasing
number of online contests, however, rank entries according
to some numerical evaluation of their absolute quality—for
instance, the performance of an algorithm on a test dataset,
or the performance of an intervention in a randomized trial.
Can the contest designer incentivize higher effort by making
the rewards in an ordinal rank-order mechanism contingent
on such cardinal information?

We model and analyze cardinal contests, where a princi-
pal running a rank-order tournament has access to an abso-
lute measure of the qualities of agents’ submissions in addi-
tion to their relative rankings, and ask how modifying the
rank-order tournament to incorporate cardinal information
can improve incentives for effort. Our main result is that a
simple threshold mechanism—a mechanism that awards the
prize for a rank if and only if the absolute quality of the
agent at that rank exceeds a certain threshold—is optimal
amongst all mixed cardinal-ordinal mechanisms where the
fraction of the jth prize awarded to the jth-ranked agent
is any arbitary non-decreasing function of her submission’s
quality. Further, the optimal threshold mechanism uses ex-
actly the same threshold for each rank. We study what con-
test parameters determine the extent of the benefit from in-
corporating such cardinal information into an ordinal rank-
order contest, and investigate the extent of improvement in
equilibrium effort via numerical simulations.

Keywords: Contests; Optimal contest design; Crowd-
sourcing; Game theory
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1. INTRODUCTION
Contests have a long history as a means for the procure-

ment of innovations, with government-sponsored contests for
research and development dating back to at least 1714.1

Contests provide an effective incentive structure for elicit-
ing effort in settings where the quality of an agent’s output
as well as her effort are unverifiable or difficult to measure,
making conventional contracts based on input or output-
dependent reward infeasible—either by virtue of being too
costly for the sponsor to implement, or because they are not
credible by virtue of being unenforceable due to unverifia-
bility of output ([8], [38]). In several such situations where
a principal cannot verifiably or cheaply measure the abso-
lute quality of an agent’s output, an ordinal comparison—
identifying a relative ranking of agents’ submissions—might
nonetheless be feasible, allowing the principal to commit to
an enforceable contract that awards rank-based prizes to
some subset of entrants in a contest. This has led to a large
literature on the optimal design of rank-order mechanisms
for effort elicitation (e.g., [8], [16], [26], [38]; see §1.1).

In contrast with more traditional settings, however, an
increasing number of online contests are intended to pro-
cure innovations whose ‘goodness’ is evaluated and ranked
via verifiable cardinal measurements. For instance, the well-
known Netflix contest, designed to procure improved algo-
rithms for movie recommendations, evaluated entries ac-
cording to how well they predicted user preferences on a
test subset of its user database; the algorithm that obtained
the highest score according to this evaluation was declared
the winner. In a different context, contests for designing
mobile apps for health or education might compute scores
for submissions based on their performance on metrics of ef-
ficacy in randomized trials2, and rank entries based on these
scores. A third example is the contest platform Kaggle,
which hosts contests where the innovation being procured
is a data-mining algorithm: again, submissions are typically
evaluated on a test dataset provided by the requesters and
ranked according to the score they obtain. A number of
other such contests abound on the Internet as well; in sum-
mary, there is an increasingly large family of online contests
where submissions can be assigned a meaningful numerical
quality score that in some way reflects their value to the
principal.

Suppose a principal running a contest has access to such

1The British parliament ran a contest with a 20000 pound
prize for a method for determining longitude-at-sea to within
half a degree.
2See, for one example, http://www.robinhood.org/prize



cardinal measurements of the qualities of agents’ submis-
sions, in addition to the ordinal ranking of their outputs.
What effect does making prizes contingent on absolute per-
formance, in addition to relative ranking, have on contes-
tants’ incentives for effort, and what is the optimal way to
incorporate such cardinal measurements of output into an
ordinal rank-order contest?

Our contributions. We model and analyze cardinal con-
tests, where a principal, who wants to maximize some in-
creasing function of the quality of received submissions, can
evaluate the quality of each submission via a real-valued
score in addition to observing the rank-ordering of contes-
tants’ outputs. We ask whether3 and how such a principal
can improve her utility by incorporating such cardinal infor-
mation to determine agents’ rewards.

Specifically, consider a rank-order tournament with prizes
(A1, A2, . . . , An) for ranks 1, . . . , n, in a model where contes-
tants are strategic and have a cost to effort. Can the princi-
pal modify the rank-order mechanism M(A1, A2, . . . , An),
using participants’ quality scores qj in addition to their
ranks j to decide how much of the prize Aj to actually award,
to improve incentives for effort? And if so, how should the
function gj(qj) that determines the fraction of the prize Aj
to be awarded to the jth-ranked contestant based on her
output quality qj (such as fractions that grow linearly or as
a convex function of quality) be chosen to create the optimal
incentives for the agents?

Our main result is that a very simple threshold
mechanism—a mechanism that awards the prize for a rank
if and only if the output of the agent at that rank exceeds
a certain threshold—is optimal amongst all mechanisms in-
duced by any increasing functions gj(·): We show that for
any given rank-order mechanism M(A1, A2, . . . , An), the
functions gj(qj) that incentivize the highest effort are pre-
cisely step functions that increase from 0 to 1 at a threshold
score (Theorem 3.1). Additionally, if the noise density that
stochastically maps an agent’s effort into her output quality
is single-peaked at 0, we find that the optimal threshold
mechanism also uses exactly the same threshold for each
rank. Interestingly, real-world contests where prizes are
made contingent on cardinal information measuring absolute
performance seem to commonly use such threshold-based
prize structures4.

After deriving comparative statics for the optimal thresh-
old and equilibrium effort in such mechanisms in §3.2, we ask
to what extent does incorporating cardinal information (via
an optimal threshold mechanism) improve equilibrium effort
relative to using only ordinal information. We address this
question via numerical simulations as well as theory, and
find that the extent to which cardinal information incen-
tivizes higher effort depends on the contest parameters: the
most substantial improvements are achieved in contests with
a smaller number of participants, contests with participants
whose cost functions are ‘not too convex’ (in a sense made

3Note that it is not even immediately obvious that cardi-
nal information can improve effort—for instance, decreasing
prizes, and more subtly, increasing the number of contes-
tants, typically both lead to decreases in equilibrium effort;
arguably, making rewards depend on absolute performance
could potentially cause a similar effect.
4For example, one of the largest contests hosted on Kaggle
awarded prizes to the top three entries, provided their scores
were above a minimum baseline.

precise in §4), and contests that award a larger rather than
smaller number of prizes.

We note that we ask the question of how to optimally
modify a given rank-order mechanism M(A1, A2, . . . , An),
rather than the question of choosing the overall optimal re-
ward structure (A1(q1, . . . , qn), . . . , An(q1, . . . , qn)) that in-
corporates all available cardinal information in determining
the reward for each rank. There are a number of reasons we
address this question rather than the more general mech-
anism design problem, the foremost of which is practical:
a principal announcing a contest might choose, or be com-
mitted to, a certain rank-based prize structure for reasons
such as sponsorship constraints, publicity, simplicity, cost
of precise evaluations of a full rank-order due to scale, and
so on5. However, the principal might still want, and more
easily be able to, incorporate an entry’s absolute quality in
determining whether, and how much of the announced rank-
based prize to actually award (for instance, she may wish to
award no prize if the highest-ranked submission performs
worse than the current state-of-the-art innovation). See §2
and §5 for further discussion.

1.1 Related Work
There is a large body of work on contest design in the

economics literature. In addition to foundational work on
the theory of contests ([17], [23], [25], [26], [27], [28], [32],
[33], [34], [35], [36], [37]), there has also been a variety of
work motivated by specific applications: [16], [20], [22], and
[30] address the design of rank-order tournaments for the
purpose of incentivizing employees to exert effort, [8] and
[38] study contest design in the context of research tourna-
ments, and finally, there is a growing literature motivated by
online crowdsourcing contests ([1], [6], [7], [10], [15]). There
is also an extensive empirical literature analyzing observed
strategic behavior by real subjects in contests in a variety of
settings ([2], [3], [4], [5], [9], [11], [12], [21], [24], [29]).

This work addresses a variety of questions related to the
economics of contests such as comparing tournaments to in-
centive schemes that are based solely on an individual’s per-
sonal performance ([17], [20], [30], [33]), relationships be-
tween contests and all-pay auctions ([7], [8], [10]), taxing
entry to improve the quality of contributions ([15], [38]),
dynamic contests in which agents dynamically decide how
much effort to exert when they continuously get informa-
tion about how they are doing in the contest compared to
their competitors ([13], [19]), and incentives for agents to
work hard in teams [18]. The most relevant subset of this
literature to our paper is that relating to optimal contest de-
sign ([1], [16], [23], [25], [26], [27], [28], [37]), which asks how
to best choose the rank-based rewards for each rank under
various models of effort and constraints on the rewards.

The key difference between this literature and our work
is that this literature almost exclusively studies contests
that are structured as rank-order mechanisms, where the
announced prizes depend only on the rank of an agent’s out-
put relative to that of her competitors, whereas we consider
mixed cardinal-ordinal mechanisms of the form described
in §2. Specifically, rather than ask which ordinal rewards

5Similar contests on the same platform (e.g. Kaggle) with
similar total prize money do sometimes differ in how they
split the total prize across ranks, suggesting that the choice
of the rank-order mechanism might perhaps not be driven
only by optimality of effort incentives.



(A1, A2, . . . , An) incentivize optimal outcomes, we ask how
cardinal information about an agent’s output can be opti-
mally incorporated into a given ordinal reward mechanism
M(A1, A2, . . . , An) to incentivze the highest effort, a ques-
tion that has not been addressed previously in this literature.
The only relevant exception, to the best of our knowledge,
is the work in [7] which does address the question of optimal
contest design using both cardinal and ordinal information,
albeit in a completely different model of output and for risk-
neutral agents only. Interestingly, although the models are
completely different, the optimal mechanism in that model
also turns out to use cardinal information via a threshold.

In addition to this key difference, we also note that we do
not make any of a variety of simplifying assumptions used in
several papers in this literature, such as risk-neutrality of the
agents, linearity of agents’ cost functions, the assumption
that there is no stochastic component that affects the final
quality of an agent’s contribution, or assuming a particular
functional form for the principal’s objective function.

2. MODEL
We consider a setting where a pool of agents competing

in a contest strategically choose their effort levels which
stochastically determines their submission qualities, and
each agent receives a prize based on the relative rank of her
output as well as possibly its absolute quality. We formally
describe the model below.

Agents. There are n agents who compete in a contest.
Each agent simultaneously chooses a level of effort ei ≥ 0 to
exert. The quality qi of agent i’s output is determined both
by her effort, and a random noise term εi

qi = ei + εi,

where each εi is an independent and identically distributed
draw from a cumulative distribution function F (ε). The
noise εi has a number of possible interpretations. Most sim-
ply, εi could model the fact that a given amount of effort (for
example, the time spent working on a research problem) does
not deterministically guarantee a certain level of output, but
rather only influences its expected value. As another inter-
pretation, the noise ε could also model randomness in the
measurement, or perception, of an agent’s output quality by
the principal. Most interestingly, εi could be thought of as
modeling heterogeneity amongst agents’ abilities to solve the
specific problem or execute the specific task required for the
contest; we discuss this in detail at the end of this section.
We will assume throughout that (i) the probability density
function f(ε) corresponding to F is a bounded continuously
differentiable function of ε with a bounded first derivative,
and (ii) the distribution F and the number of agents n are
known to all agents.

Utilities. An agent’s utility is the difference between her
benefit from any prize she wins and her cost of effort. An
agent who receives a prize Ai derives a value, or benefit, of
v(Ai), where v(·) is a strictly increasing and concave func-
tion satisfying v(A) ≥ 0 for all A ≥ 0 and v(0) = 0. Exerting
effort ei incurs a cost c(ei), where c(·) is a strictly increasing
and convex function satisfying c(0) = 0 and c′(0) = 0.

The utility to an agent who exerts effort ei and receives
prize Ai is the difference between this benefit and cost, ui =
v(Ai) − c(ei). We assume that each agent chooses ei to
maximize her expected utility E[v(Ai)] − c(ei), where the

expectation is over the n random draws of εi′ that determine
each agent’s output quality given her effort (and therefore
their prizes). Our model allows for both risk-neutral and
risk-averse agents, as v(A) may either be a linear function
of A (in which case agents are risk-neutral) or a strictly
concave function of A (corresponding to risk-averse agents).

Mechanisms. We suppose that the principal running the
contest can observe the quality qi of an agent’s output, and
therefore also the relative rankings of all agents. (Our results
extend immediately to a model where the principal’s obser-
vations of output qualities are noisy, as long as the noise
in each observation is an IID draw for each agent). We use
M(A1, A2, . . . , An) to denote a rank-order mechanism which
assigns a reward Aj to the agent with the jth-highest out-
put regardless of its absolute quality, and assume throughout
that A1 ≥ . . . ≥ An ≥ 0.

Mixed cardinal-ordinal mechanisms. Let qj denote
the quality of the jth-ranked submission. We consider mixed
cardinal-ordinal modifications of a rank-order mechanism
M(A1, A2, . . . , An) of the formM(g1(q1)A1, . . . , gn(qn)An),
which awards the agent with the jth-ranked submission of
quality qj a prize Pj = gj(qj)Aj , where gj(q) is a non-
decreasing function of q satisfying 0 ≤ gj(q) ≤ 1. That
is, gj(q) represents the fraction of the ‘maximum’ prize Aj
for achieving rank j that an agent obtains if she produces
a contribution with absolute quality q. Note that the rank-
order mechanismM(A1, A2, . . . , An) corresponds to setting
gj to be the constant function gj(q) = 1 for all j.

We note that a principal with access to cardinal measure-
ments of the qualities of each submission could conceivably
use more general mechanisms even when modifying an ex-
isting rank-order mechanism, by allowing the function gj to
depend not only on the quality of the corresponding jth-
ranked submission, but rather on the entire vector of qual-
ities (q1, . . . , qn). We restrict ourselves to mechanisms that
use functions gj(qj) for simplicity, both of analysis and im-
plementation. In addition to leading to simpler mechanisms,
a principal might, practically speaking, prefer to announce
a contest where the prize awarded to a winner is contingent
on the absolute quality only of her own submission, and not
on the absolute qualities of the submissions produced by her
competitors; see also the discussion in §1.

Principal’s objective. We assume that the principal’s
objective is to maximize some utility function W (q1, . . . , qn)
of agents’ output qualities in equilibrium, where W is non-
decreasing in its arguments—i.e., W (q1, . . . , qn) is such that
if q′i ≥ qi for all i, then W (q′1, . . . , q

′
n) ≥ W (q1, . . . , qn). We

will be interested throughout in symmetric pure-strategy
Nash equilibria (i.e., all agents choose the same effort e,
and no agent can improve her expected payoff given that
the other n − 1 agents choose effort e and the noise terms
ε are drawn from the distribution F .) If agents all use the
same level of effort in equilibrium, then the principal’s ex-
pected utility is non-decreasing in the symmetric pure strat-
egy effort choice of the agents: therefore, all such increasing
objectives W (·) are simultaneously improved by mechanisms
which elicit higher equilibrium effort from agents, assuming
a symmetric equilibrium.

Heterogeneity. Our model, with noise terms εi all drawn
from the same distribution F and costs to effort given by
the same function ci(·) = c(·), suggests contributors who
are a priori homogeneous, corresponding to a pool of con-
testants who all have similar skills or ability for the subject



of the contest (for example, programmers with similar levels
of expertise or graphic designers with similar skill levels).
Such a model captures scenarios where it is predominantly
differences in effort, rather than differences in intrinsic abil-
ity, that dominate differences in the quality of the outcome
produced. It also captures scenarios where the set of poten-
tial contestants may be self-selected to have rather similar
abilities or expertise levels, and therefore similar costs to
producing a particular quality.

Our model nonetheless allows capturing agent heterogene-
ity in two different ways. First, two contestants with the
same effort choice will still come up with solutions of dif-
ferent qualities depending on their draws of εi, correspond-
ing to situations where agents with similar skills nonetheless
produce different outputs for the specific task posed by a
particular contest. Second, the incentives of agents in con-
tests where there is indeed heterogeneity in abilities that
affects agents’ final output qualities, but where agents do
not know these abilities (beyond their distribution) prior to
making their strategic effort choices, are identical to those in
our model with ‘abilities’ drawn from F (·) after the agents
choose their effort levels. Therefore, this model of het-
erogeneity includes many situations with non-homogeneous
contributors, as long as agents do not learn their abilities
prior to choosing their effort levels.

In a different model of heterogeneity amongst agents that
appears in the contest design literature, an agent’s output
qi is her ability-scaled effort aiei, where agents’ abilities are
all randomly drawn from a single distribution F : a loga-
rithmic transformation of variables from qi = aiei in those
models yields exactly our model where qi = ei+ εi. The key
difference between these two models of heterogeneity is tim-
ing of information—agents observe their random draws of
ai before making their strategic effort choices in those mod-
els, whereas agents do not observe their draws of εi prior
to making their effort choices in our model (for instance,
as with a graphic designer who does not know exactly how
good a design she will produce until she attempts it).

3. OPTIMAL CARDINAL MODIFICA-
TIONS OF ORDINAL MECHANISMS

A contestant’s cardinal quality score can be incorporated
into a given rank-order mechanism in many different ways.
A mechanism might choose to increase the reward for each
rank linearly with an agent’s output; more generally, the
reward might increase as some convex function of her car-
dinal quality score up to some maximum reward. The re-
ward scheme could also vary discontinuously with the qual-
ity of the agent’s output, for instance so that the reward for
a particular rank is determined by which of several inter-
vals the corresponding quality score lies in. A priori, each
of these cardinal modifications to a rank-order mechanism
might create stronger incentives for effort than a purely ordi-
nal mechanism by making reward more strongly dependent
on the absolute quality. In general, given any set of prizes
(A1, A2, . . . , An), the principal could apply any reasonable
function gj(qj) to the quality score qj of the jth-ranked agent
to decide how much of the prize Aj she will receive (includ-
ing the identity function gj(qj) = 1, which yields the original
purely ordinal contest). What choice of functions gj(·) cre-
ates the strongest incentives for effort amongst all possible
non-decreasing functions gj?

While analyzing this question, we make two mild simpli-
fying assumptions throughout. First, we assume that there
is a symmetric pure strategy equilibrium in which all agents
exert the same effort level e in the game; we show in the full
version of the paper [14] that such symmetric pure strategy
equilibria will exist under the fairly standard assumption
that a player’s cost function is sufficiently convex. Second,
we consider functions gj(q) for which there is some small
δj > 0 such that gj(q) may only assume values that are in-
tegral multiples of δj . While this assumption is purely for
technical simplicity and our results continue to hold without
this assumption (albeit with a more complex proof), we note
that this assumption is realistic because in any practical ap-
plication there will be some minimum unit of a currency
that represents the smallest possible amount by which one
can change the value of an agent’s prize. (For example, if
prizes were paid in US dollars, any prize would necessarily
have to be some integral multiple of some small fraction of a
penny, as a principal would not be able to divide an agent’s
prize further than this).

Our main result, Theorem 3.1, shows that the question
of how to choose the functions gj(q) to optimally modify
any given rank-order mechanism using cardinal information
has a strikingly simple answer: For any given rank-order
mechanismM(A1, A2, . . . , An), no other functions gj(q) can
incentivize higher equilibrium effort than the optimal step
functions that increase from 0 to 1 at some threshold score.
We refer to such mechanisms as threshold mechanisms.

Theorem 3.1. Consider a rank-order tournament in
which the agent who finishes in jth place is awarded a prize
gj(q)Aj, where gj(q) is a non-decreasing function satisfy-
ing 0 ≤ gj(q) ≤ 1 for all q. There exist functions gj(q) of
the form gj(q) = 0 for q < q∗j and gj(q) = 1 for q ≥ q∗j for
some constants q∗j that incentivize the highest equilibrium ef-
fort amongst all possible mechanisms characterized by some
functions gj(q).

Proof. Consider a set of ladder functions lj(q) that are
characterized by a set of mj cutoffs q∗1,j < q∗2,j < . . . < q∗mj ,j

for each of the j prizes such that gj(q) = r0,j for q < q∗1,j ,
gj(q) = rm,j for all q ∈ [q∗m,j , q

∗
m+1,j), and gj(q) = rmj ,j

for q ≥ q∗mj ,j , where 0 ≤ r0,j < r1,j < . . . < rmj ,j ≤ 1.

Note that any non-decreasing function gj(q) such that gj(q)
is an integral multiple of δj and 0 ≤ gj(q) ≤ 1 for all q
can be written in this form. Thus in order to prove that
threshold mechanisms are optimal amongst the set of all
mechanisms, it suffices to show that threshold mechanisms
are also optimal amongst the set of all mechanisms induced
by ladder functions.

Let yj(e, ei, εi) denote the probability that agent i finishes
in jth place for a given realization of εi given that agent i
exerts effort ei and all other agents exert effort e. If the
prize for being ranked in the jth place with a contribution
of quality q is lj(q)Aj for some ladder function lj(q), then
an agent i’s expected utility from exerting effort ei when all
other agents are exerting effort e is

E[ui] =

n∑
j=1

∫ ∞
−∞

v(gj(ei + εi)Aj)yj(e, ei, εi)f(εi) dεi − c(ei)

=

n∑
j=1

mj∑
k=0

∫ q∗k+1,j−ei

q∗
k,j
−ei

v(rk,jA)yj(e, ei, εi)f(εi) dεi − c(ei)



where we abuse notation by letting q∗0,j ≡ −∞ and
q∗mj+1,j ≡ ∞. In a symmetric pure-strategy equilibrium,
all agents, and specifically agent i, choose effort e, and this
is a best response, i.e., the derivative of ui with respect to
ei must be zero at ei = e. That is, the equilibrium effort e
must satisfy the first order conditions given below:

c′(e) =

n∑
j=1

mj∑
k=0

v(rk,jA)[yj(e, e, q
∗
k,j − e)f(q∗k,j − e)

−yj(e, e, q∗k+1,j − e)f(q∗k+1,j − e)

+

∫ q∗k+1,j−e

q∗
k,j
−e

∂yj(e, ei, εi)

∂ei

∣∣∣∣
ei=e

f(εi) dεi]. (1)

But note that the right-hand side of this equation is a lin-
ear function of v(rk,jA) for all k and j. From this it follows
that for all k ≤ mj , the right-hand side of this equation is ei-
ther non-decreasing in rk,j or non-increasing in rk,j . Thus if
mj ≥ 2, then one can instead set the value of r1,j to either
be equal to r0,j or r2,j without decreasing the right-hand
side of equation (1), meaning that one can make this change
without decreasing equilibrium level of effort.

But setting the value of r1,j to equal to r0,j or r2,j would
be equivalent to replacing the ladder function lj(q) with a
ladder function that has mj−1 points of discontinuity rather
than mj points of discontinuity. From this it follows that
if one is using a mechanism based on ladder functions lj(q)
such that some lj(q) has mj ≥ 2 points of discontinuity, then
the mechanism designer can induce at least as large a level
of effort by instead using some mechanism based on ladder
functions such that lj(q) has mj − 1 points of discontinuity.
By induction, it then follows that the mechanism designer
can also induce at least as large a level of effort by instead
using some mechanism based on ladder functions such that
each lj(q) has no more than one point of discontinuity.

To complete the proof, it suffices to show that if the mech-
anism designer is using a mechanism based on ladder func-
tions lj(q) that each have no more than one point of discon-
tinuity, i.e., mj ≤ 1 for all j, then these single-step ladder
functions must correspond to threshold mechanisms, i.e.,
that r0,j ∈ {0, 1} and r1,j ∈ {0, 1}. Since equilibrium effort
is again given by the solution to equation (1), and the right-
hand side of this equation is a linear function of v(rk,jA) for
all k and j, we again have that the right-hand side of this
equation is either non-decreasing in r0,j or non-increasing
in r0,j . Thus if lj(q) has exactly one point of discontinuity,
then one can set the value of r0,j to either be equal to 0 or
r1,j without decreasing the right-hand side of equation (1),
meaning that one can make this change without decreasing
the equilibrium level of effort.

Now if r0,j = 0, then the same argument illustrates that
one can set the value of r1,j to either be equal to 0 or 1 with-
out decreasing the right-hand side of equation (1), meaning
that one can make this change without decreasing the equi-
librium level of effort. And if r0,j = r1,j , then lj(q) has no
points of discontinuity, and the same argument again illus-
trates that one can set the value of r0,j = r1,j to be either 0
or 1 without decreasing the right-hand side of equation (1),
meaning that one can make this change without decreasing
the equilibrium level of effort. By combining these facts, it
follows that the mechanism designer can induce the agents
to exert at least as much effort in equilibrium by using a

threshold mechanism in which r0,j ∈ {0, 1} and r1,j ∈ {0, 1}.
The result then follows.

While there are potentially a variety of far more nuanced
ways to incorporate cardinal information in determining
agents’ prizes in a mixed cardinal-ordinal mechanism, The-
orem 3.1 says that there is always an optimal mechanism
with an exceedingly simple form—it awards the entire value
of the jth prize to the agent who finishes in jth place if this
agent’s output quality meets some threshold, and awards her
no prize at all otherwise. This result is quite surprising, since
it would seem far more natural to use a mechanism where
an agent’s prize varies smoothly with the quality of her out-
put than one where it exhibits a sharp discontinuity with
respect to quality, especially if agents are risk-averse—risk-
averse agents are likely to prefer a prize structure in which
they have a good chance of receiving a moderate prize over
one in which they have a high chance of receiving nothing
and a high chance of receiving a large prize. Nonetheless,
Theorem 3.1 shows that such threshold mechanisms can al-
ways incentivize agents to choose optimal effort levels.

3.1 Optimal Thresholds
Our main result shows that the optimal mechanism is a

threshold mechanism. We now ask what the optimal thresh-
olds are. To do this, we will need an equilibrium analysis of
threshold mechanisms.

Since we are interested in symmetric equilibria in which
all players choose equilibrium effort e, we begin by com-
puting a player’s expected utility from a given threshold
mechanism when the player exerts effort ei and all other
players exert effort e. Consider a given threshold mech-
anism M(A1, t1, A2, t2, . . . , An, tn), where the jth-ranked
agent receives prize Aj if and only if her output qual-
ity exceeds threshold tj . Agent i’s expected utility in
M(A1, t1, A2, t2, . . . , An, tn) from choosing effort ei, when
all other agents are exerting effort e, is the difference be-
tween i’s expected prize minus the cost of her effort c(ei),
where i’s prize depends both on the rank of the quality of
her output qi = ei + εi relative to the qualities of the other
agents’ outputs qi′ = ei′ + εi′ , and whether her output qi
exceeds the threshold tj specified for her rank j. We thus
begin by considering the probability that agent i’s output
has rank j when she chooses effort ei and all other agents
choose effort e. If ε[j] denotes the jth-largest of the noise
terms ε drawn by the n − 1 remaining agents, then agent i
will have the jth-highest quality output if and only if

e+ ε[j] ≤ ei + εi ≤ e+ ε[j−1].

The probability of this event, for a given draw of εi, is
the probability that the number ei + εi − e lies between the
random values of ε[j] and ε[j−1]. Thus the probability of this
event is equal to the probability that exactly j − 1 of n −
1 randomly drawn values from the cumulative distribution
function F (·) exceed ei + εi− e. Using standard expressions
for binomial probabilities, we know that this event takes
place with probability

(
n− 1

j − 1

)
(1− F (ei − e+ εi))

j−1F (ei − e+ εi)
n−j . (2)

Now suppose agent i produces output qi = ei + εi. To
actually receive the prize Aj in the threshold mechanism



M(A1, t1, A2, t2, . . . , An, tn), i’s output must also exceed the
threshold tj , i.e., satisfy ei + εi ≥ tj . Therefore, the proba-
bility that agent i finally receives the jth prize, unconditional
on the realization of εi, is the integral of the probability in
equation (2) over εi ≥ tj − ei, i.e.,

∫ ∞
tj−ei

(
n− 1

j − 1

)
(1− F (ei − e+ εi))

j−1F (ei − e+ εi)
n−jf(εi) dεi.

Thus an agent’s total expected utility from exerting effort
ei, when other agents choose e, is the sum of her expected
benefit over all ranks j minus her cost c(ei) or

E[ui] =

k∑
j=1

v(Aj)

∫ ∞
tj−ei

(
n− 1

j − 1

)
(1− F (ei − e+ εi))

j−1 ×

F (ei − e+ εi)
n−jf(εi) dεi − c(ei).

We now address the question of the optimal thresholds
t∗j in the threshold mechanism. The proof of optimality of
threshold mechanisms does not say anything about how the
thresholds corresponding to each rank j vary with j, and
thus allows for the possibility that the thresholds that are
optimal for each rank might be substantially different for
each rank. However, while it might seem intuitive that the
optimal threshold could either consistently increase or con-
sistently decrease across ranks, this turns out not to be the
case, as we show below:

Theorem 3.2. Suppose the noise density f(·) is single-
peaked at 0. Then the optimal threshold mechanism
M(A1, t

∗
1, . . . , An, t

∗
n) applies the same threshold to each

rank j for any monotone mechanism M(A1, A2, . . . , An),
i.e., t∗j = t∗ for j = 1, . . . , n.

Proof. If the mechanism designer uses a threshold mech-
anism in which the agent who finishes in jth place receives
a prize if and only if this agent’s observed quality exceeds
tj , then an agent i’s expected utility from exerting effort ei
when all other agents are exerting effort e is given by

E[ui] =

n∑
j=1

∫ ∞
tj−ei

v(Aj)yj(e, ei, εi)f(εi) dεi − c(ei)

where we let yj(e, ei, εi) ≡
(
n−1
j−1

)
(1−F (ei−e+εi))

j−1F (ei−
e+ εi)

n−j denote the probability that agent i finishes in jth

place given that all other agents exert effort e, agent i exerts
effort ei, and the value of agent i’s noise term is εi. From
this it follows that the derivative of the agent’s utility with
respect to ei is given by the following expression:

n∑
j=1

v(Aj)[yj(e, ei, tj − ei)f(tj − ei) +

∫ ∞
tj−ei

∂yj(e, ei, εi)

∂ei
f(εi) dεi]− c′(ei)

By setting this derivative equal to zero when ei = e, it
then follows that it is an equilibrium for all agents to exert
effort e if and only if c′(e) =

n∑
j=1

v(Aj)[yj(e, e, tj−e)f(tj−e)+
∫ ∞
tj−e

∂yj(e, ei, εi)

∂ei

∣∣∣∣
ei=e

f(εi) dεi].

(3)
In the optimal threshold mechanism, the thresholds tj

must be chosen in such a way as to make the expression
in equation (3) as large as possible for a given e. A neces-
sary condition for this is that the derivative of the left-hand
side of this equation with respect to tj must be zero for all
j. When we differentiate the left-hand side of this equation
with respect to tj , the only term that remains is

v(Aj)yj(e, e, tj − e)f ′(tj − e). (4)

Now note that the principal would never have an incen-
tive to choose a value of tj that is equal to −∞ or ∞ for all
j. To see this, note that for values of tj that are arbitrarily
negative, it must be the case that tj − e < 0 in equilibrium,
meaning f ′(tj − e) > 0 and the derivative of the left-hand
side of equation (3) with respect to tj is positive. Thus for
any sufficiently negative values of tj , the principal can al-
ways increase the left-hand side of equation (3) by increasing
tj , and thereby increase the equilibrium level of effort. From
this it follows that a threshold of tj = −∞ can never be opti-
mal for any j. A similar argument shows that a threshold of
tj =∞ can also never be optimal. Thus there is some large
finite value of T > 0 such that all thresholds tj /∈ [−T, T ] are
dominated by some threshold tj ∈ [−T, T ] for all j. Since
this set of feasible thresholds is compact, and the equilib-
rium level of effort varies continuously with the thresholds,
it then follows that some set of optimal thresholds exists.

Now if the optimal threshold tj is not equal to −∞ or
∞, then it must be the case that the derivative in equation
(4) is zero at the optimal tj . Now we know that f(·) is
single-peaked at 0, so when tj is not equal to −∞ or∞, the
above derivative is only zero when tj = e. Thus the optimal
thresholds satisfy tj = e for all j and the optimal thresholds
are always equal for all prizes.

Theorem 3.2 says that optimally incorporating cardinal
scores into a rank-order contest to maximize effort is, in
fact, even simpler than the method suggested by The-
orem 3.1—a mechanism designer only needs to compare
all agents’ outputs against the same baseline, i.e., con-
sider only threshold mechanisms with equal thresholds, re-
ducing the problem of finding the optimal modification
of M(A1, A2, . . . , An) to one of choosing a single optimal
threshold t∗ for M(A1, A2, . . . , An). Note, of course, that
the optimal threshold t∗ depends on the rank-order mecha-
nismM(A1, A2, . . . , An) that we are applying the threshold
to; we suppress this dependency of t∗ onM(A1, A2, . . . , An)
for notational brevity.

Our proof of Theorem 3.2 also contains a proof of the fol-
lowing result, which we state here since it is used repeatedly
in the remainder of our analysis:

Corollary 3.1. Suppose that f(·) is single-peaked at 0.
Then the optimal threshold that induces the highest equilib-
rium effort in the threshold mechanism is equal to the equi-
librium level of effort at that threshold.

3.2 Comparative Statics



We now address the question of how the optimal thresh-
old t∗ varies with changes in the problem parameters,
specifically with the number of contestants and changes in
the prize structure. First we consider comparative statics
with respect to the number of agents. Our mechanisms
M(A1, A2, . . . , An) so far have been specified in terms of
the prizes for each of the n ranks, where n is the number
of players. Since we want to now vary n, we assume that
there is a fixed number k of prizes, A1, A2, . . . , Ak, and the
number of players n is greater than or equal to k. In this
scenario, we prove the following result:

Theorem 3.3. Consider any given rank-order mecha-
nism M with prizes A1, . . . , Ak, and let t∗(n) denote the
optimal threshold forM when there are n agents in the con-
test. If the noise density f(·) is single-peaked at 0, then the
optimal threshold t∗(n) is decreasing in the number of play-
ers n for all n ≥ k. Further, the equilibrium effort in the
optimal threshold mechanism also decreases with n.

Proof. Note that a player i’s expected value for her prize
from exerting effort ei when all other players are exerting ef-
fort e is just equal to the sum, over all j = 1, . . . , k, of the
difference between the value the player obtains from receiv-
ing the jth prize Aj and her value from the j + 1th prize
Aj+1, multiplied by the probability that she finishes in at
least jth place and meets the threshold t. Now let Gj(q)
denote the probability that no more than j − 1 of the n− 1
values of εi′ are greater than q. Then the probability that
agent i finishes in at least jth place for any given realization
of εi when she exerts effort ei and all other players are ex-
erting effort e is Gj(ei−e+εi). From this it follows that the
probability agent i finishes in at least jth place and meets
the threshold t unconditional on the realization of εi is

∫ ∞
t−ei

Gj(ei − e+ εi)f(εi) dεi.

By using the insights in the previous paragraph, it follows
that player i’s expected utility from exerting effort ei when
all other players are exerting effort e is

k∑
j=1

(v(Aj)− v(Aj+1))

∫ ∞
t−ei

Gj(ei − e+ εi)f(εi) dεi − c(ei)

By differentiating this expression with respect to ei, set-
ting the derivative equal to zero, and using the fact that
ei = e must hold in any symmetric pure strategy equilib-
rium, it follows that the following relationship must be sat-
isfied by the equilibrium level of e:

k∑
j=1

(v(Aj)−v(Aj+1))[Gj(t−e)f(t−e)+
∫ ∞
t−e

dGj(ε)

dε
f(ε) dε] = c′(e)

From Corollary 3.1, the equilibrium effort e at the optimal
threshold t will satisfy t− e = 0. Thus equilibrium effort in
the optimal threshold mechanism is the solution to

k∑
j=1

(v(Aj)−v(Aj+1))[Gj(0)f(0)+

∫ ∞
0

dGj(ε)

dε
f(ε) dε] = c′(e).

(5)

Now, Gj(ε) is the probability that no more than j − 1 of

n − 1 random draws of εk are greater than ε and
dGj(ε)

dε
represents the density corresponding to this distribution.
Write Gj(ε;n) to denote the dependence of Gj on n. Then,
the distribution Gj(ε;n

′) first order stochastically dominates
Gj(ε;n) for all n′ > n. Further, f(ε) is non-increasing in ε
for all ε ≥ 0, since we assumed that f(·) is single-peaked at
0. From this it follows that increasing n decreases the value
of the expression

Gj(0)f(0) +

∫ ∞
0

dGj(ε)

dε
f(ε) dε = Eε∼Gj [f(max{0, ε})]

for all j (by stochastic dominance). Therefore, for equal-
ity to hold in equation (5), the equilibrium effort e(n) must
be such that c′(e(n)) also decreases with n, i.e., e(n) de-
creases with n. Since the equilibrium effort in the optimal
threshold mechanism decreases with the number of players,
and the optimal threshold equals equilibrium effort in the
optimal threshold mechanism, by Corollary 3.1, the optimal
threshold t∗(n) is also decreasing in n.

Next we ask how the optimal threshold varies with the
number of prizes awarded. To formulate this question mean-
ingfully, we consider contests where the top k participants
who meet the threshold all receive the same prize, for some
k, and consider two ways that the total number of prizes
might increase—first, where the total prize pool stays the
same, but the prizes are split amongst a larger number of
players, and second, where the value of each prize stays the
same, but more prizes of this value are awarded (contingent
on meeting the threshold). The optimal threshold varies
predictably with these changes in the prize structure, as the
following theorem illustrates:

Theorem 3.4. Suppose that f(·) is single-peaked at zero
and the number of prizes is less than the number of players.

(1) The optimal threshold t∗ in a contest with k equal
prizes of value A increases with k.

(2) The optimal threshold t∗ in a contest with k equal
prizes of value A/k each also increases with k if players
are sufficiently risk-averse in the sense that the coefficient
of absolute risk aversion on v(·) is sufficiently large.

Proof. We know from equation (5) in the proof of the
previous theorem that if Gj(q) denotes the probability that
no more than j−1 of the n−1 other values of εi′ are greater
than q, then the following condition must be satisfied by
the equilibrium level of effort e in the optimal threshold
mechanism:

k∑
j=1

(v(Aj)−v(Aj+1))[Gj(0)f(0)+

∫ ∞
0

dGj(ε)

dε
f(ε) dε] = c′(e)

Substituting in the fact that Aj = Ak for j ≤ k and
Aj = 0 for j > k, it then follows that the equilibrium level
of effort e satisfies the following equation:

v(Ak)[Gk(0)f(0) +

∫ ∞
0

dGk(ε)

dε
f(ε) dε] = c′(e),

which can be rewritten as



v(Ak)Eε∼Gk [f(max{0, ε})] = c′(e) (6)

Now if one increases the number of prizes by awarding ad-
ditional prizes that are the same as those originally awarded
to agents who finished in the top k and met the thresh-
old, then v(Ak) is independent of k. And if one increases
the number of prizes by splitting the same total prize pool
amongst a larger number of players, then in the limit as the
coefficient of absolute risk aversion on v(·) becomes arbitrar-

ily large, v(Ak)
v(A)

becomes arbitrarily close to 1, and v(Ak)

approaches a function that is also independent of k.
But we also know that Eε∼Gk [f(max{0, ε})] is increasing

in k since the fact that Gk(ε) is a distribution corresponding
to the probability that no more than k−1 of the n−1 values
of εj are greater than ε implies that Gj first order stochas-
tically dominates Gk for all j < k. And we also know that
f(max{0, ε}) is decreasing in ε for all ε > 0. By combining
these facts, it follows that Eε∼Gk [f(max{0, ε})] is increasing
in k. Thus under either of the conditions of the theorem, it
must be the case that v(Ak)Eε∼Gk [f(max{0, ε})] is increas-
ing in k. By combining this fact with equation (6), it then
follows that under either of these conditions, equilibrium ef-
fort in the optimal threshold mechanism is increasing in k.
Since the optimal threshold is equal to equilibrium effort in
the optimal threshold mechanism, it then follows that the
optimal threshold is also increasing in k.

The intuition for this result has to do with how an agent’s
incentives to try to meet the threshold vary with the number
of prizes. As the number of prizes increases in either of the
two manners considered in Theorem 3.4, the expected value
of the prize that an agent obtains for meeting the thresh-
old unambiguously increases. Thus agents have a stronger
incentive to try to meet the threshold when the number of
prizes increases, and agents will thus exert more effort in
equilibrium when there are a larger number of prizes. Since
the optimal threshold is equal to the equilibrium level of ef-
fort (from Corollary 3.1), it then follows that increasing the
number of prizes also increases the optimal threshold.

4. HOW USEFUL IS CARDINAL INFOR-
MATION?

Our results thus far show that making the award of the
prizes in a rank-order contestM(A1, A2, . . . , An) contingent
on submission qualities exceeding a suitable threshold cre-
ates the strongest incentives for effort, and in particular,
outperforms the contest that ignores cardinal information.
In this section, we briefly address the question of how much
of an improvement is obtained from using this cardinal infor-
mation relative to M(A1, A2, . . . , An), which awards prizes
based only on relative rankings.

We first present simulation results to obtain a quantita-
tive sense for the size of the improvement in equilibrium
effort as a function of the number of contestants, the na-
ture of participants’ cost functions, the reward structure
(A1, A2, . . . , An), and the noise distribution governing the
stochastic perturbations that influence an agent’s output.
We ask to what extent the size of these gains are affected by
changes in these underlying parameters, and discuss these
results in the context of typical parameter values in online

contests. Finally, we conclude with a result (proven in the
full version of the paper [14]) that formalizes the observa-
tions from these simulations.

Simulations. We simulate contests with n players, each
with cost that varies polynomially with effort according to
the function c(ê) = êa

a
for some constant a > 1 (so that a

higher value of a corresponds to a more convex cost func-
tion). We assume that players are risk-neutral, with linear
values v(A) = A for receiving a prize of A. For the distribu-
tion of the noise terms εi that randomly influence a player’s
submission quality as qi = ei + εi, we consider IID draws
from (i) a standard normal distribution (i.e., with mean 0
and variance 1) and (ii) a standard Laplace distribution.
For the set of prize structures, for simplicity and brevity we
consider contests with prizes of A1 and A2 for the top two
ranks and Aj = 0 for all lower ranks. Each of n (the number
of players), a (the exponent in the players’ cost functions),
and the split into A1 and A2 are parameters describing the
contest that we will vary in our simulations.

Computing equilibrium efforts. To quantify the ex-
tent of improvement in equilibrium effort from using car-
dinal information in a contest M(A1, A2, . . . , An), we first
need to calculate the equilibrium level of effort both with
no threshold and with the optimal threshold. When there is
no threshold, the equilibrium level of effort is the same as it
would be if the threshold were t = −∞. Applying equation
(3) to the special case in which t = −∞, we see that the
equilibrium level of effort e∗φ with no thresholds must satisfy

n∑
j=1

v(Aj)

[ ∫ ∞
−∞

[
(n− 1)!

(j − 1)!(n− j − 1)!
(1− F (εi))

j−1F (εi)
n−j−1 (7)

− (n− 1)!

(j − 2)!(n− j)! (1− F (εi))
j−2F (εi)

n−j
]
f2(εi) dεi

]
= e∗

a−1

φ

where we abuse notation by defining (n−1)!
(j−2)!(n−j)! to be zero

when j = 1.
When the mechanism designer uses the optimal threshold

t∗, we know from Corollary 3.1 that the equilibrium level
of effort e∗O equals the optimal threshold. Setting t = e in
equation (3), we see that the equilibrium level of effort e∗O
must satisfy

e∗
a−1

O =

n∑
j=1

v(Aj)

[(
n− 1

j − 1

)(
1

2

)n−1

f(0) +

∫ ∞
0

[
(n− 1)!

(j − 1)!(n− j − 1)!
(1− F (εi))

j−1F (εi)
n−j−1 (8)

− (n− 1)!

(j − 2)!(n− j)! (1− F (εi))
j−2F (εi)

n−j
]
f2(εi) dεi

]
We can compute the percentage increase in equilibrium

effort for a particular set of contest parameters by using the
equations above to compute e∗φ and e∗O. We compute these
improvements for a wide range of different parameters to
observe how the various parameters affect the extent of the
increase in equilibrium effort from using cardinal informa-
tion via the optimal threshold mechanisms. While we cannot
present the full results for want of space, we summarize the
results for a few parameter values in Tables 1, 2, and 3.

Discussion of simulation results. The simulations
lead to a number of interesting insights. First, they show



n Normal distribution Laplace distribution
2 20.71% 50.00%

3 4.95% 16.67%

4 1.59% 7.14%

5 0.58% 3.33%

6 0.23% 1.61%

7 0.10% 0.80%

8 0.04% 0.40%

9 0.02% 0.19%

Table 1: Percentage increase in equilibrium effort
from using the optimal threshold under a winner-

take-all contest when the cost to effort ê is c(ê) = ê2

2
for different noise distributions and varying values
of the number of players n.

a Normal distribution Laplace distribution
1.25 6.51% 31.78%

1.5 3.21% 14.80%

1.75 2.12% 9.64%

2 1.59% 7.14%

3 0.79% 3.51%

4 0.53% 2.33%

5 0.40% 1.74%

6 0.32% 1.39%

Table 2: Percentage increase in equilibrium effort
from using the optimal threshold for different noise
distributions and varying values of the the term a in
the cost function c(ê) = êa

a
, under a winner-take-all

contest with n = 4.

that when the number of players is larger, the benefit to set-
ting the optimal threshold (as compared to using no thresh-
old) is relatively smaller. We also see that when the parame-

ter a in the exponent of the cost function c(ê) = êa

a
increases,

so that players’ cost functions are more convex, less is gained
by using the optimal threshold. Finally, when more of the
prizes are given to the lower-ranked players, there is again
a larger benefit from using the optimal threshold.

These observations all have intuitive explanations. Since
equilibrium effort always equals the optimal threshold
(Corollary 3.1), when there are a large number of players,
it is quite likely that the final realized quality of the win-
ning player will far exceed the threshold, so the threshold
provides little incentive for the players to exert additional
effort. By contrast, when there are only a small number
of players, there is a significant risk that even the winning
player’s final realized quality will be in the same range as
the threshold, and the threshold may therefore provide sig-
nificant incentives to exert effort. Thus using the optimal
threshold should have a relatively smaller effect when there
are a larger number of players.

It is worth noting that both the regimes with large num-
bers of players and small numbers of players are relevant
empirically. For example, in Kaggle contests6, there are typ-
ically at least dozens and usually hundreds of participants,
so in such a contest setting the optimal threshold is likely

6http://www.kaggle.com/competitions

(A1, A2) Normal distribution Laplace distribution
(1, 0) 0.58% 3.33%

(0.9, 0.1) 1.06% 5.17%

(0.8, 0.2) 1.59% 7.14%

(0.7, 0.3) 2.20% 9.26%

(0.6, 0.4) 2.90% 11.54%

(0.5, 0.5) 3.72% 14.00%

Table 3: Percentage increase in equilibrium effort
from using the optimal threshold for different noise
distributions and varying distributions of the top

prizes, with five players when c(ê) = ê2

2
.

to have little effect on incentives to exert effort. By con-
trast, many tasks on TaskCN and Topcoder7 only attract a
few participants8, and so in such contests, using cardinal in-
formation via the optimal threshold is likely to significantly
improve equilibrium effort. There are also online contests
with elimination rounds leading up to a final round with a
small number of finalists competing for a prize (such as the
Robin Hood Foundation Prize9). In such settings, our re-
sults would apply to the extent of suggesting that using an
optimal threshold to award prizes is likely to significantly
improve effort in the final round of the contest.

The observation that using an optimal threshold would
have less effect when the players’ cost functions are more
convex also has an intuitive explanation. When the players’
cost functions are more convex, a change in the amount of
effort a player exerts does relatively more to increase the
player’s marginal cost of exerting effort, which in turn im-
plies that a player can only increase his effort by a smaller
amount in response to improved incentives before the play-
ers’ marginal cost from exerting more effort will equal his
marginal benefit. Thus using the optimal threshold will have
less effect when the players’ cost functions are more convex.

Finally, the observation that the optimal threshold has a
greater effect when more of the prizes are given to the lower-
ranked players can be understood as follows. The lower-
ranked players are more likely to have final realized qualities
that are close to the threshold, so the threshold provides a
greater incentive for a lower-ranked player to exert effort
than a higher-ranked player. Thus when a relatively greater
amount of the prize pool is given to the lower-ranked players,
this has the effect of shifting prizes from players who will
be less strongly incentivized by the thresholds to players
who will be more strongly incentivized by the thresholds.
Thus using the optimal threshold has a relatively greater
effect when a larger amount of the prize pool is distributed
amongst lower ranks.

The insights from these simulations are, in fact, more gen-
eral than this. In the full version of the paper [14], we prove
the following result under some technical assumptions:

Theorem 4.1 (Informal). The absolute and relative

7http://community.topcoder.com/tc?module=CompList&
pt=35
8For example, [24] notes that most programming tasks on
TaskCN attracted less than six participants and [39] notes
that it is far more common to receive a small number of
solutions for a task on TaskCN than some larger number of
solutions.
9https://www.robinhood.org/prize



differences between the equilibrium effort elicited in the op-
timal threshold mechanism and an ordinal rank-order mech-
anism with no threshold is (i) decreasing in the number of
players, (ii) increasing in the number of prizes if all the
prizes are equal, and (iii) decreasing in the convexity of the
cost function, where the degree of convexity of the cost func-

tion is measured by the ratio c′′(e)
c′(e) .

5. DISCUSSION AND FURTHER WORK
In this paper, we addressed the problem of how a princi-

pal running a contest might optimally incorporate cardinal
information regarding the absolute qualities of contestants’
entries into an existing rank-order tournament, motivated
by the observation that an increasing number of contests to-
day evaluate entries according to some numerical metric. We
found that threshold mechanisms, which compare a submis-
sion’s score against an absolute threshold—in fact, the same
threshold for each prize—are optimal amongst the class of all
mixed cardinal-ordinal mechanisms which award the agent
with the jth-ranked submission with quality qj an arbitrary
quality-dependent fraction gj(qj) of the prize Aj . There-
fore, using cardinal information as coarsely as by comparing
against a single threshold provides the optimal modification
of a rank-order mechanism in terms of incentives for effort.
Finally, we saw that gains from incorporating cardinal infor-
mation relative to using only ordinal information are highest
for small contests with more than one prize and with par-
ticipants whose costs to effort are not too convex.

Further results. There are a number of interesting ques-
tions regarding incentives in cardinal contests that we ad-
dress in the full version of this paper [14].

Endogenous entry. A first natural question is how the
results would be affected by the possibility of endogenous
entry. While we have assumed throughout this paper that
the number of players in the contest is known and fixed,
there are many real-world situations in which participation,
even with very low effort, is costly and an agent must strate-
gically decide whether to participate at all. We address how
the possibility of endogenous entry affects the equilibrium
in [14], and show that the choice of threshold in a thresh-
old mechanism results in an interesting participation-effort
tradeoff: the equilibrium level of participation may increase
as a result of decreasing the threshold, but such equilibria
will result in the agents exerting lower levels of effort. How
the principal resolves this tradeoff will then depend on how
much the principal values participation versus effort.

Optimal rank-based prizes. Another interesting question
relates to whether the optimal division of prizes would
change as a result of optimally incorporating cardinal in-
formation into a contest. In particular, suppose that the
optimal division of the total prize pool A amongst the n
places for a rank-order mechanism is (A1, . . . , An). Is it
still the case that this is the optimal division of the prizes
amongst the n places for the optimal mixed cardinal-ordinal
mechanism that makes use of the optimal threshold? We ad-
dress this question in [14] as well, and show that the answer
to this question depends crucially on whether the agents are
risk-averse: if agents are risk-neutral in the sense that v(A)
varies linearly with A, then the optimal division of prizes
will be the same for both a pure rank-order mechanism and
the optimal threshold mechanism. However, if agents are

risk-averse in the sense that v(A) is strictly concave in A,
then this need not be the case. Instead, the principal will
typically want to reward a larger percentage of the prize pool
to the lower ranks under the optimal threshold mechanism
than in a purely ordinal tournament.

Learning optimal thresholds. A number of questions also
arise from practical considerations regarding uncertainty.
For instance, the optimal threshold t∗ for a given rank-order
contest depends on the parameters of the population, which
the designer might typically not have access to. As such,
it might be difficult for a mechanism designer to set the
optimal threshold in a contest. How could a mechanism de-
signer who intends to run multiple iterations of a contest
learn what the optimal threshold is from the earlier iter-
ations of the contest? We show in [14] how a mechanism
designer without complete knowledge of the contest popula-
tion could make probabilistic inferences about whether the
threshold selected was too high or too low from the results
of previous contests and use this information to better set
the threshold in future iterations.

Open questions. A number of open questions remain for
further research. First, the specific question we ask about
modifying given rank-order mechanisms to incorporate car-
dinal information is motivated by the fact that practical
considerations beyond incentives for effort—such as simplic-
ity, sponsorships of various prize levels, media or publicity
considerations—might cause a principal to choose a partic-
ular prize structure for his contest. However, it is also very
interesting to study the more general optimal contest design
problem in such contests with access to absolute measure-
ments of quality. What mechanism M(q1, . . . , qn) incen-
tivizes the highest effort over all mechanisms with access to
cardinal, and not just ordinal, information about outputs?10

And how does the answer to this question depend on the
specifics of the model such as agents’ risk preferences and
the objective function of the mechanism designer?

A second intriguing theoretical question regards a con-
nection to optimal auctions and reserve pricing. There is
a formal connection between auctions and contests ([7], [8],
[10]) in an alternative model for contests where effort deter-
ministically translates into output (see §2 for a discussion
regarding the difference with our model). At first glance,
this might suggest a mapping between the model and anal-
ysis in our paper and that in the literature on sponsored
search auctions [31]. However, this simplified mapping is a
fallacious analogy in contests where output is a stochastic
perturbation of effort, because the fact that an agent’s out-
put is determined by a noise-perturbed version of effort com-
pletely changes both the structure of the problem and all the
underlying analysis relative to auctions. Nevertheless, the
parallels between the results on optimality of threshold-like
structures in these two settings—contests and auctions—
raises the intriguing question of whether there is indeed a
way to formally relate our results on optimalities of thresh-
olds in contests to optimality of reserve prices in auctions.
A deeper understanding of the connection between thresh-
old mechanisms and optimal auctions is an interesting open
direction for further research.

10[7] addresses this question in a specific (but different)
model; see §1.1.
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