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Abstract. A context in sponsored search is additional information about a query, such as the user’s age,
gender or location, that can change an advertisement’s relevance or an advertiser’s value for that query.
Given a set of contexts, advertiser welfare is maximized if the search engine runs a separate auction for
each context; however, due to lack of competition within contexts, this can lead to a significant loss in
revenue. In general, neither separate auctions nor pure bundling need maximize revenue.
With this motivation, we study the algorithmic question of computing the revenue-maximizing partition
of a set of items under a second-price mechanism and additive valuations for bundles. We show that the
problem is strongly NP-hard, and present an algorithm that yields a 1

2
-approximation of the revenue

from the optimal partition. The algorithm simultaneously yields a 1
2
-approximation of the optimal

welfare, thus ensuring that the gain in revenue is not at the cost of welfare. Finally we show that our
algorithm can be applied to the sponsored search setting with multiple slots, to obtain a constant factor
approximation of the revenue from the optimal partition.

1 Introduction

Sponsored search is a very effective medium for advertising as it allows precise targeting of advertisements
to users: a user can be presented with advertisements that are directly related to her search query. However,
further targeting is possible by using the context of a query and the user associated with the query. A context
in a sponsored search auction is additional information associated with a particular instance of a query that
can change an advertisement’s relevance or an advertiser’s value for that keyword. For example, zip codes can
often be inferred from IP addresses, providing a user location context: for certain queries (say pizza delivery,
or dentist) local advertisements might be more relevant to the user than non-local ones. Other examples of
contexts are age or gender-related demographic information, or ’search intent’ gleaned from other searches
by the same user.

The formal study of sponsored search with contexts was recently introduced by Even-Dar et al [?],
where the authors showed that splitting a keyword auction into mutiple auctions, one for each context (for
example, if the context is location, then having one auction for each location), increases welfare. They also
gave examples demonstrating that there is a tradeoff: while welfare increases upon splitting contexts, the
search engine’s revenue may be larger when the keyword is not split (i.e. , all contexts stay combined). (To
see why, consider the case when the auction for each context has only one participating advertiser; since the
mechanism used is a a variant of second price auctions [?,?], such advertisers face no competition and will
generally pay a small reserve. So the revenue to the search engine is very small compared to the situation
when contexts are not separated.) However, the search engine’s choice is not limited to the two extreme
partitions of the set of contexts, namely, keeping each context separate (maximizing efficiency) or combining
all contexts together (pure bundling): other partitions of the set of contexts may give better points on the
revenue-efficiency trade-off curve (in fact, we will show that the revenue from the optimal partition can be
arbitrarily larger than the revenue from these two extreme partitions, while losing no more than half the
maximum efficiency.)

In this paper, we study the algorithmic problem of optimally partitioning a set of contexts to maximize
revenue under a second-price mechanism in the full information setting, i.e. , when the matrix of bidder
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valuations for each context is known (for simplicity, we study the case of a single slot, and later generalize
the results to multiple slots). We show that this problem is strongly NP -hard, and then provide a 1/2-
approximation algorithm for it. This approximation algorithm also loses no more than 1/2 the maximum
possible efficiency (obtained when all contexts are auctioned separately, possibly with great loss in revenue).
We emphasize that since the optimal revenue can be arbitrarily larger than the revenue from either selling all
contexts separately or combining them all together, the revenue from this algorithm can also be arbitrarily
larger than the natural benchmark revenue; the factor 1/2 is with respect to the optimal revenue over all
partitions, not the larger revenue of the two extreme partitions. Finally we show that our algorithm can be
applied to the sponsored search setting with multiple slots to obtain a factor (1−q)

2 of the optimal revenue,
when slot clickthrough rates decay geometrically [?] as qj .

We consider the full information setting for the following reason. A search engine making the decision
to split contexts might want to compute a partition of contexts into auctions just once (or infrequently),
rather than dynamically 3. In this case the search engine will use observed historical data to compute these
partitions. Specifically, consider keywords where the value-per-click remains almost constant across contexts,
with only click-through rates varying across context. Search engines usually have reasonable estimates of
click-through rates across contexts, and also of valuations of advertisers who bid frequently on a keyword
(while the GSP auction is not truthful, techniques from [?] can be used to obtain estimates of values).
Further, advertisers’ actual valuations for keywords do not vary significantly over time, as these values are
typically based on the estimated profit from future conversions. Thus it is reasonable and possible to use
a partitioning algorithm based on full information in this setting 4. A similar reasoning applies to another
situation where bundling may be valuable, which is for related keywords with thin markets (for instance,
bundling together misspellings of a valuable keyword like insurance, where each misspelling might have bids
from only a few advertisers).

Related work: The study of bundling in the economics literature was started by Palfrey [?], and
later extended to various settings [?,?,?]. Recently, Jehiel et. al. [?] proposed a novel framework to study
mixed bundling auctions, and proved that under certain distributional assumption over valuations, mixed
bundling generates more revenue than both bundling all items together, or selling all items separately.
Another related paper in this context is [?], which studies high revenue auctions from the class of virtual
valuations combinatorial auctions, and gives an auction which is within a logarithmic factor of the revenue
maximizing auction for additive valuations. Bundling has also been studied in the setting of monopoly
pricing [?,?,?,?]. Our work differs from all of this literature in that we consider the algorithmic problem of
computing the optimal, revenue maximizing partition under a second price mechanism in the full information
setting; we give a constant factor approximation for this problem, along with an efficiency guarantee.

A different solution for revenue maximization in thin markets is to set a reserve price based on estimates
of distributions of advertiser valuations [?]. Bundling is a more robust solution when bidders’ values (or
distributions of bidder values) change with time, but in a positively correlated fashion, such as temporal or
seasonal variations (prominent examples are keywords related to travel, or occasions such as Valentine’s day
(like flowers)). In such cases the same bundling structure can be maintained as opposed to optimal reserve
prices which will need to be updated to maintain high revenues.

2 Model

There is a set I of items numbered 1 . . . k, and and a set U of agents, 1, . . . , n. There is a single copy of
each item (we discuss the multiple-slot case in §??). Let vij be the value that agent i has for item j. We

3 In fact, it is not clear what it means to dynamically compute bundles of contexts in the sponsored search setting,
since queries corresponding to all contexts do not appear simultaneously; also advertisers might change their bids
asynchronously.

4 Note that once bundles have been computed, the usual equilibrium analysis of a keyword auction can be applied
to each bundle [?].
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assume that agents valuations for bundles are additive—the value that agent i has for a bundle B ⊆ I, viB ,
is

∑
j∈B vij .

Items, or bundles of items, are sold according to a second-price auction: the winner of a bundle B is the
agent with max viB , and is charged the second highest valuation for that bundle. An allocation partitions
I across the bidders. Let Si denote the set of items allocated to bidder i. The welfare of the allocation is∑

i∈U viSi
, and the revenue is the sum of the prices paid by each winning agent.

Our problem is the following: Given the matrix of valuations vij , we want to compute the revenue
maximizing partition of items into bundles, when each bundle is awarded to the agent with the highest
valuation at a price equal to the second highest valuation for the bundle.

We briefly discuss how the sponsored search setting maps to the above model. Suppose there are n
bidders, where bidder i, 1 ≤ i ≤ n, has a value per click vi. Assume that there is just one slot. Suppose
there are k different contexts, and the clickthrough rate (CTR) of bidder i for context j is cij—this is the
probability that the advertisement of bidder i will be clicked on when displayed in context j. Further, let
fj denote the number of impressions corresponding to a specific context. The value that advertiser i has for
context j is vij = vifjcij . We assume that valuations are additive, i.e. the valuation for a set of contexts
I ′ is vi ·

∑
j∈I′ fjcij . We note that our model is quite general and can also be applied to bundling different

keywords together or the case that different context has different values.

3 Characterizing optimal bundling

An optimal bundling is a partitioning of items into bundles that leads to the largest revenue, when items
are allocated to the agent with the highest valuation for the bundle at a price equal to the second-highest
valuation. In this section, we characterize the structure of bundles in an optimal bundling, and show that
bundling to maximize revenue does not lose much efficiency.

Before we discuss optimal bundling, it is natural to ask whether it is sufficient merely to consider two
extreme partitions: sell all items separately, or bundle them all together (in fact, much prior work on bundling
restricts itself to these two options). However, the larger of the revenues from these two extreme partitions
can be arbitrarily worse than the revenue of the optimal bundling, as the following example shows. The same
example shows that the efficiency loss can also be arbitrarily large when we choose the revenue-maximizing
bundle from these two extreme partitions.

Example 1. Suppose there are k items and k agents. The valuation of bidder i is 1 for item i, and 0 for all
other items. If all items are sold separately, the revenue is 0 (and welfare is k). Bundling them together gives
a revenue of 1 (and welfare 1). However, the revenue of optimal bundling is k

2 , which is obtained by pairing
items, i.e. , partitioning into k

2 bundles; this also has welfare k
2 . Thus choosing between these two options

to maximize revenue can lead to revenue and efficiency that are both arbitrarily worse than the optimal
revenue and optimal efficiency.

The following facts follow easily from the above example. (Note that maximum efficiency is always
obtained when selling all items separately.)

– An efficiency-maximizing bundling with the highest revenue does not, in the worst case, give a c-
approximation of revenue for any constant c ≥ 0.

– A revenue-maximizing bundle with the highest efficiency does not, in the worst case, yield better than a
1
2 -approximation of welfare.

(Note that the revenue maximizing bundle is not unique, and efficiency can vary across optimal partitions:
suppose there are 2 items, and 3 bidders with valuations (10, 0), (5, 5), and (0, 10). Both partitions yield the
maximum revenue of 10; however one has welfare 20 and the other has welfare 10.)
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We will now show, in Theorem ??, that the statement in the second fact is tight. Let hj be the highest
valuation for item j, i.e. hj = maxi{vij}, and let sj be the second highest valuation for item j. We state the
following fact without proof. Consider a bundle B in an optimal bundling. If there is an item j that can be
removed from B with no decrease in revenue, the new bundling obtained by selling j separately from B is
an optimal bundling with weakly greater efficiency. Note that this lemma implies that in any bundle B (in
a revenue-optimal bundling with highest efficiency) with two or more items, we can assume that hj > sj for
j ∈ B. We state the following lemma regarding the structure of the optimal bundling (proof in full version):

Lemma 1. Consider a bundle B in an optimal bundling with highest efficiency. If bidder i has the highest
valuation for item j in bundle B, then i has either the highest valuation or the second highest valuation for
bundle B.

Proof. Let i1 and i2 be the bidders with the highest and second highest valuations for bundle B, and
consider any item j ∈ B. If j is removed from the bundle B, the revenue from B \ {j} is at least min(vi1B −
vi1j , vi2B − vi2j) ≥ vi2B − max(vi1j , vi2j). Since it is strictly beneficial to bundle j with B \ {j}, we must
have vi2B > vi2B −max(vi1j , vi2j) + sj , so that sj < max(vi1j , vi2j), which proves the claim.

Theorem 1. An optimal bundling with the highest efficiency also gives a 1
2 -approximation for efficiency.

Proof. Consider a bundle B in such an optimal bundling, and let i1 and i2 be the bidders with the highest and
the second highest valuation for the bundle. Since B is allocated to i1, vi1B ≥ (1/2)(

∑
j∈B vi1j +

∑
j∈B vi2j).

From Lemma ??, we have
∑

j∈B vi1j +
∑

j∈B vi2j ≥
∑

j∈B hj . Therefore, summing over all bundles in the

optimal bundling, the efficiency of the allocation is at least 1
2

∑k
j=1 hj . The proof follows since the maximum

efficiency is
∑k

j=1 hj .

4 Computing the Optimal Bundling

We now turn to the question of computing a revenue-maximizing bundle.

Theorem 2. The problem of finding the optimal bundling is strongly NP -Hard.

Proof. The proof is by reduction from 3-partition, which is strongly NP -hard: given a multiset S of 3n
positive integers, can S = {x1, x2, . . . , x3n} be partitioned into n subsets S1, S2, . . . , Sn such that the sum of
the numbers in each subset is equal.

Let w =
∑3n

i=1 xi. We reduce the problem by constructing an instance of the bundling problem with n+1
bidders and 4n items. The instance is given in the table below. Each row corresponds to a bidder and each
column represents an item. All empty values are 0.

w
n

w
n

. . .
w
n

x1 x2 · · · x3n

It is easy to see that the revenue of the optimal bundling for the instance above is w if and only if there
exists a 3-partition.

Approximation algorithm: Next we present an approximation algorithm for this problem which ap-
proximates the optimal revenue by a factor 1/2; in addition, the efficiency of the bundling is no smaller than
1/2 of the maximum efficiency. Recall that hj and sj are defined as the highest and second highest valuations
for item j. Let Ai be the set of items for which agent i has the highest valuation, i.e. Ai = {j | vij = hj},
and let wi =

∑
j∈Ai

hj . Number agents so that w1 ≥ w2 ≥ . . . ≥ wn. Let An+1 = ∅, and wn+1 = 0.
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Algorithm B :

r1 ←
∑

j∈A1
sj +

∑bn/2c
i=1 w2i+1;

r2 ←
∑bn/2c

i=1 w2i;
If (r1 ≥ r2):

Sell all items in A1 separately;
For i← 1 to bn/2c

Bundle items in A2i and A2i+1;
else

For i← 1 to bn/2c
Bundle items A2i−1 and A2i;

Theorem 3. Algorithm B obtains at least half the revenue from an optimal bundling.

Proof. Let OPT be the optimal revenue. We prove the following inequality.

OPT ≤
∑
j∈A1

sj +
n∑

i=2

wi = r1 + r2. (1)

The claim then follows since the revenue of B is at least max{r1, r2}.
To prove (??), let B be a bundle in an optimal bundling, and let i and i′ be the two agents with highest

valuations for B. At least one of these two agents is not agent 1; let i be this agent. Because the mechanism
charges the second highest price for each bundle, the revenue of the optimal bundling from B is at most:∑

j∈B

vij =
∑

j∈B∩A1

vij +
∑

j∈B−A1

vij ≤
∑

j∈B∩A1

sj +
∑

j∈B−A1

hj

Summing over all bundles in the optimal bundling yields (??).

Proposition 1. The efficiency of algorithm B is at least half the maximum efficiency.

Proof. The maximum efficiency is
∑

j hj =
∑n

i=1 wi. The efficiency of B is at least

w1 + min(
bn/2c∑
i=1

w2i,

bn/2c∑
i=1

w2i+1) ≥ 1
2

n∑
i=1

wi,

since the algorithm always sells items in A1 to bidder 1; this gives us the result.

5 Multiple Slots

We finally discuss the case of multiple slots, and show that our algorithm gives a constant factor of the
optimal revenue when slot clickthrough rates decrease geometrically, which is realistic for sponsored search
auctions [?,?].

Suppose there are m slots numbered 1 . . .m. Following [?], assume that the click-through-rate of ad i for
context j in slot k is separable into cij ·Θk (i.e. , the clickthrough rate can be factored into a term specific to
the advertiser-keyword pair and another term specific to the slot). We will show that Algorithm B continues
to give us a constant factor approximation of revenue when the slot-dependent CTR decreases geometrically,
i.e. Θk+1 = q ·Θk, for some q with 0 < q < 1.
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Fix an instance of the full information, sponsored search problem, i.e., a value per click vi for each
advertiser i, the parameters cij for each advertiser-context pair, and the slot specific CTRs Θj for the slots.
Let fj be the number of impressions from context j. Given any bundling of the keywords, we now define
revenue of the generalized second price auction (GSP) [?]. Unlike the second price auction for one slot, this
auction is not truthful. We assume that the equilibria of [?,?] are attained. The prices at such an equilibrium
is precisely the prices that VCG would charge in each bundle [?,?].

Denote revenue from the revenue maximizing bundling as R∗, and let P denote the partition of keywords
in this bundling. Consider a bundle B ∈ P. Let viB = vi ·

∑
j∈B fj · cij . Number bidders in non-increasing

sequence of viBs. The equilibrium from [?] predicts that the first m bidders appear in sequence from slot 1
to slot m, and the revenue from player k is (

∑m
k=i(Θk −Θk+1)vk+1,B). Thus the total revenue from all m

slots is R∗ =
∑

B∈P(
∑m

i=1

∑m
k=i(Θk−Θk+1)vk+1,B). The contribution of the first slot to R∗, denoted R∗f , is

R∗f =
∑

B∈P(
∑m

k=1(Θk − Θk+1) · vk+1,B). Because the number of clicks to the top slot is a (1− q)-fraction
of all clicks, we can show:

Lemma 2. R∗f ≥ (1− q) ·R∗.

This allows us to prove the following result (proof in full version):

Theorem 4. Algorithm B is 1−q
2 -competitive with the optimal bundling.

Acknowledgements: We are grateful to Mohammad Mahdian, David Pennock, Amin Saberi and Michael
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