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Incentives, gamification, and game theory: An economic approach to
badge design
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Gamification is growing increasingly prevalent as a means to incentivize user engagement of social media sites that rely on
user contributions. Badges, or equivalent rewards such as top-contributor lists that are used to recognize a user’s contributions
on a site, clearly appear to be valued by users who actively pursue and compete for them. However, different sites use
different badge designs, varying how, and for what, badges are awarded— some sites such as StackOverflow award badges
for meeting fixed levels of contribution, while others like Amazon and Y! Answers reward users for being amongst some top
set of contributors on the site, corresponding to a competitive standard of performance. Given that users value badges, and
that contributing to a site requires effort, how badges are designed will affect the incentives— and therefore the participation
and effort— elicited from strategic users on a site.

We take a game-theoretic approach to badge design, analyzing the incentives created by widely-used badge designs in
a model where winning a badge is valued and effort is costly, and potential contributors to the site endogenously decide
whether or not to participate, and how much total effort to put into their contributions to the site. We analyze equilibrium
existence, and equilibrium participation and effort in an absolute standards mechanism Mα where badges are awarded for
meeting some absolute level of (observed) effort, and a relative standards mechanism Mρ corresponding to competitive
standards as in a top-ρ contributor badge. We find that equilibria always exist in both mechanisms, even when the value from
winning a badge depends endogenously on the number of other winners. However, Mα has zero-participation equilibria
for standards that are too high, whereas all equilibria in Mρ elicit non-zero participation for all possible ρ, provided ρ is
specified as a fixed number rather than as a fraction of actual contributors (note that the two are not equivalent in a setting
with endogenous participation). Finally, we ask whether or not a site should explicitly announce the number of users winning
a badge; the answer to this question is determined by the curvature of the value of winning the badge as a function of the
number of other winners.

1. INTRODUCTION
An increasingly large fraction of useful information on the Web, such as content on online
knowledge-sharing forums like StackOverflow, Y! Answers, and Q&A forums for education, or
ratings and reviews on sites like Amazon and Yelp, is now contributed by users. A number of these
websites relying on user contributions employ some form of virtual rewards to increase engagement
and to motivate their users to participate actively on the site. These rewards, meant to provide an
incentive for participation and effort on the site, usually reflect various site-level accomplishments
based on a user’s cumulative ‘performance’ over multiple contributions. Such gamification is now
very commonly used to increase participation and effort on websites, and several of the most pop-
ular user-contribution based sites such as StackOverflow, Amazon, Y! Answers, and more recently
TripAdvisor and Quora, now hand out some form of recognition to users for their overall contribu-
tions to the site. For instance, the hugely popular Q&A site StackOverflow awards badges1 to users
for various kinds and degrees of overall contributions, such as an archaeologist badge for ‘Edited
100 posts that were inactive for 6 months’, or a Civic Duty badge for ‘Voted 300 or more times’.
Amazon announces a Top Reviewers list2 that recognizes the top reviewers on Amazon, based on
the quality-weighted volume of reviews of their contributions.

These forms of recognition are indeed quite popular amongst users, who actively compete to win
them—for example, users are observed to increase their effort levels when they are getting close
to the contribution level required for a badge in StackOverflow [Anderson et al. 2013], and there
is an entire discussion community on the Web centered around how to break into Amazon’s Top
Reviewer list and sites discussing how to maintain a Top Contributor badge on Yahoo! Answers.
Similarly, users who have just earned entry into top contributor lists often find an increased number

1http://stackoverflow.com/badges
2http://www.amazon.com/review/top-reviewers
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of negative votes from other users attempting to displace them. Clearly, these forms of recognition
do act as motivation for users.

But there are a number of different ways that such rewards for overall contribution, which we will
simply refer to as badges henceforth, can be structured. For instance, StackOverflow awards badges
to users for overall contributions that meet some set, or absolute, level, such as a ‘Legendary’ badge
for ‘Earning 200 reputation at least 150 times’. Other sites, such as Amazon or Yahoo! Answers,
award top-contributor style badges based on competition amongst users— that is, recognition that is
based on the relative level of contribution, rather than for meeting an absolute standard. While there
is very recent work on the various social-psychological functions of badges as incentives [Antin and
Churchill 2011], the design of badges also involves incentives in a game-theoretic sense: given that
badges appear to motivate contributors on UGC sites, and that contribution incurs a cost, each of
these different reward designs induces a mechanism in the presence of self-interested contributors,
which in turn can affect the degree of participation and effort chosen by potential contributors to the
site. What can we understand, in a game-theoretic framework, about the incentives created by these
design choices? Specifically:

(1) What incentives are created by mechanisms induced by a set, or absolute, standard (such as
those used by StackOverflow) that must be met to earn a badge, and what incentives are created
by a competitive, or relative, standard (such as the top-contributor badges used by Y! Answers
or Amazon’s top-reviewer lists)?

(2) How exactly should competitive standards be specified—should the site award some fixed num-
ber of top-contributor badges independent of the number of actual contributors (such as a Top
10 Contributors list), or should the number of badges be some fraction of the number of actual
contributors? Note that since participation is a voluntary, strategic choice, the number of actual
contributors is not fixed apriori, but rather is determined endogenously, so that these are not
equivalent quantities.

(3) What happens if users’ value from winning such a badge depends on the scarcity of the badge,
i.e., the number of other users who also win the badge— do equilibria even exist in this
setting where the value to winning a badge is determined endogenously by the number of other
winners? How do the incentives created by awarding badges for absolute and relative standards
behave now, and how does the presence or absence of precise information about the number of
other winners affect equilibrium effort?

Our contributions. We model and analyze the problem of designing badges to reward overall user
contributions on a site in a game-theoretic framework, where expected utility maximizing contribu-
tors strategically choose (i) whether or not to participate and (ii) how much total effort to expend on
the site. This question of how to reward overall contributions to incentivize effort and participation
is now ubiquitous and arises across a spectrum of online applications that rely on voluntary user
contributions, ranging from motivating users on social media sites, to Citizen Science efforts and
Games with a Purpose or GWAPs [von Ahn and Dabbish 2008], to encouraging student participa-
tion in online forums for education such as Piazza or discussion forums in MOOCs. We analyze the
incentives created by the design choices of rewarding contributors with badges for meeting some ab-
solute level of (observed) contribution or effort— modeled as the noise-perturbed output produced
by an agent— and the incentives created by relative or competitive standards, as in a top-contributor
list. We formalize each of these design choices as mechanisms, and analyze these mechanisms from
the standpoint of equilibrium existence and equilibrium participation and effort.

We find that equilibria exist in the absolute standards mechanismMα for all possible values of
the standard α. However, there is a maximum standard αmax such that the only equilibria for all
standards higher than αmax involve zero participation, leading to no contributions. The existence
of equilibria for relative standards mechanismsMρ is somewhat more subtle— due to endogenous
participation— and turns out to depend on how the relative standard ρ is specified. Roughly speak-
ing, we find that if the site specifies a fixed number of winners, or equivalently a fixed fraction
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ρ of the total population of potential contributors, equilibria exist for all values of ρ > 0 in this
mechanismMp

ρ. However, if the site instead declares a fraction ρ of actual contributors to be win-
ners, there is an interval of ρ values where equilibria simply do not exist in this versionMc

ρ of the
relative standards mechanism. The two versionsMp

ρ andMc
ρ behave identically for ρ outside this

range, suggesting thatMp
ρ, corresponding to specifying a fixed number of top-contributor badges,

is a more robust mechanism.
The equilibrium analysis ofMp

ρ reveals an interesting contrast with the absolute standards mech-
anismMα:Mp

ρ elicits non-zero participation in equilibrium for every value of ρ > 0, whereasMα

can lead to zero equilibrium participation when α is too large. We also find a partial equivalence
betweenMα andMp

ρ— every absolute standard α ≤ αmax leads to an equilibrium outcome that
is identical, in terms of induced effort and participation, to the equilibrium outcome in the relative
standards mechanism with an appropriate value of ρ ∈ [ρmin, 1) where ρmin > 0 is the equilibrium
fraction of winners at the standard αmax. The value of ρ that elicits the maximum effort from con-
tributors occurs at a relative standard ρ that lies in this range [ρmin, 1]—therefore, if the mechanism
designer wishes to optimize elicited effort and has adequate information about the parameters of the
population to choose such an optimal value of α or ρ, the absolute and relative standards mecha-
nisms are equivalent. In the absence of such information, or with uncertainty about the parameters,
however, a ‘top contributor’ style mechanismMp

ρ based on competitive standards that always elicits
non-zero equilibrium participation might be, informally speaking, more desirable than an absolute
standards mechanism.

An unusual feature of virtual rewards such as badges is that they are typically social-pyschological
rather than monetary— in such settings, the reward from winning might not have an absolute utility,
but rather might depend on how scarce, or special, the achievement represented by the badge is
perceived to be. We next investigate the setting where an agent’s value from winning a badge de-
pends on how many other agents also win the badge, with the value from winning decreasing with
an increase in the number of winners. Here, it is not at all obvious whether equilibria even exist—
consider, for example, the absolute standards mechanismMα. Does there exist an effort level such
that the resulting number of winners (given noisy observations of effort) leads to a value for winning
the badge at which that effort level is optimal?

We show, surprisingly, that equilibria always exist for all values of α and ρ in both mechanisms
Mα andMp

ρ. As with fixed values from winning a badge, we find here also thatMp
ρ always elicits

non-zero participation whereas Mα can lead to zero participation when α is too high (although
unlike with fixed valuations, equilibria inMα can now involve mixing between participation and
non-participation). Finally we investigate the impact of uncertainty about the number of winners on
effort. On some sites such as StackOverflow, it is very easy to see the total number of winners of a
badge, whereas on other sites such as Y! Answers, it is much harder to infer how many users have
top-contributors badges— how does uncertainty about the number of winners influence equilibrium
effort in this endogenous valuation setting? We show that the answer depends on the convexity or
concavity of the value as a function of winner fractions— uncertainty reduces effort if this function
is concave, whereas it increases effort when it is convex.

1.1. Related Work
There is now a growing literature on mechanism design and game-theoretic approaches to social
computing and user-generated content systems [Jain and Parkes 2008; Chen et al. 2009; Ghosh
and McAfee 2011; Ghosh and Hummel 2011; Ghosh and McAfee 2012; Ghosh and Hummel 2012,
2013]. The key difference between this existing literature and our work is that prior work has largely
focused on models and analysis for rewarding contributions, whereas we focus on the problem of
rewarding contributors for their overall contributions to a site, rather than incentivizing desirable
behavior in a single contribution decision. That is, the research thus far models and prescribes re-
ward allocation mechanisms for a single “unit”’ on a site— how to allocate points amongst the set
of answers contributed to a single question [Chen et al. 2009; Ghosh and McAfee 2012; Ghosh and
Hummel 2012], or attention amongst the set of reviews for one product on Amazon or a particular
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restaurant on Yelp [Ghosh and McAfee 2011, 2012; Ghosh and Hummel 2013]; or how to distribute
prize money amongst the contestants in a single crowdsourcing contest [Chawla et al. 2012; Archak
and Sundarajan 2009; Ghosh and McAfee 2012]. While some of these models (such as in [Ghosh
and McAfee 2011; Ghosh and Hummel 2012]) could arguably be extended to the contributor-reward
problem, the analysis there regards mechanisms that are meaningful in the context of single contri-
butions rather than overall contributor rewards.

The two most relevant papers from this literature are [Chawla et al. 2012; Ghosh and McAfee
2012], which discuss mechanism design for eliciting optimal effort from agents in (a single) crowd-
sourcing contest. [Chawla et al. 2012] study the design and approximation of optimal crowdsourc-
ing contests, but in a model with a fixed number of participants, whereas modeling endogenous
entry— the fact that participation on a UGC site is a voluntary choice— is crucial and significantly
changes the nature of the analysis. [Ghosh and McAfee 2012] address questions related to optimal
reward design, in a setting with endogenous entry. However, they do so in a model with perfectly ob-
servable output, a reasonable assumption in the specific context of crowdsourcing where the princi-
pal posing the task can supply an accurate rank-ordering of contributions. But output is typically not
perfectly observable in the settings we discuss, where the main indicator of the (quality-weighted)
output on most sites is viewer feedback or ratings which are not perfect indicators of value in prac-
tice, since these ratings can be biased, erroneous, or even strategic or malicious.

There is also a large and growing literature on empirical studies and models of user behavior in
social computing systems, as well as research on human factors and design from a social psycho-
logical perspective. The most relevant work from the first stream is the very recent work [Anderson
et al. 2013] on badges and their effect on user behavior in StackOverflow, where the authors es-
tablish from empirical data that users indeed value badges and modify their site activities to earn
badges, and propose a model of how a user splits her time across various possible actions on a
site (such as asking, answering, voting) in response to badges that are awarded for these actions.
While this work also discusses how a site may award badges to steer user behavior, it focuses on
the interaction between a single user and the site, and how to incentivize a user to choose amongst
different actions on the site via a given mechanism (which corresponds to the mechanismMα in
our work). In contrast, we compare the incentives created by different types of mechanisms, which
induce a game amongst users, rather than simply a best-response optimization with respect to the in-
centives offered by the site. The most relevant work from the social-psychology literature is [Antin
and Churchill 2011], which discusses the various functions of badges in terms of the psychological
incentives created by badges, and is complementary to our work.

The problem of incentivizing effort in online systems based on user contributions has several
features in common with the economics literature on tournaments. Tournaments are used for such
diverse purposes as choosing winners in sporting events, procuring innovations, or rewarding work-
ers. The economics literature on tournaments begins with [Lazear and Rosen 1981] (for more recent
work focusing on heterogeneous abilities see [Moldovanu and Sela 2001]) who analyze the incen-
tive effects of paying workers based on their relative performance, rather on the basis of their input
or the absolute amount of output they produce. Tournaments are often useful ways to incentivize
workers or suppliers if the input they provide is unobservable and the output they produce is unver-
ifiable. For example, in soliciting research and development of a new product it may be impossible
to observe the effort a potential supplier puts into the innovation process and it may be impossible to
clearly specify the product that they are supposed to produce, see [Che and Gale 2003]. Individuals
who consider contributing on websites online and have to decide how much effort to expend on the
site are similar to workers in a firm, and in both cases effort is typically observed with noise—the
noise in our setting comes from evaluations of a user’s contributions by other users (votes or rat-
ings), while for workers in a firm the noise comes from the transformation of a worker’s effort into
observable output which may involve the effort of multiple workers.
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The paper that is most relevant for us from the economics literature is [Morgan et al. 2012] which
analyzes career choice when jobs are viewed as participation in a contest for promotion.3 Although
the issues discussed in the economics literature are different from ours, our model has several fea-
tures in common with [Morgan et al. 2012]— most importantly, the noisy, indirect observation of
effort in a setting with a continuum of agents. Our setting, however, is different in several important
ways: first, the reward received by winners in our setting is the utility they get from a badge which is
neither directly under the control of the site (in contrast to wage or promotion policies for firms) nor
determined in a competitive marketplace for workers (in contrast to wages in a competitive market
for labor). Second, the utility that an agent receives from a badge may depend on how commonplace
badges are, while others wages or promotions are typically assumed not to effect a worker’s benefit
from his own wage or promotion.

2. MODEL
In this section, we describe our model for analyzing the incentives created by various schemes for
rewarding user contributions, when contributors are strategic agents with a cost to effort, and when
the decision of whether or not to participate is a strategic choice. Our model consists of a continuum
of agents of differing abilities who choose whether or not to contribute, and how much total effort
to expend on making contributions to the site. Each agent has an increasing cost to effort and an
agent’s output scales with her effort. Outputs are observed ‘noisily’ by the system, and a mechanism
determines whether and which agents to reward based on these noisy observations of output. An
agent who ‘wins’ a badge derives value while an agent who does not win derives no value. We ask
what outcomes are elicited by the mechanisms corresponding to commonly-used badge designs in
terms of the level of participation and chosen effort. The model is described formally below.

There is a continuum of agents, or potential contributors, indexed by their ability A ∈ [a, ā] ⊂
<. We assume that abilities are distributed according to an atomless probability distribution with
support [a, ā]. This continuum of agents assumption is important for our analysis, since it allows
us to analyze the contribution decision in a perfectly competitive framework in which no single
agent’s decision is large enough to affect the payoff of any other agents. This assumption of a
perfectly competitive environment (from the point of view of contributors) seems reasonable for
sites with huge potential participant populations and adequately large numbers of rewards such as
StackOverflow, Amazon, or Y! Answers, where a typical single contributor cannot significantly
change the standards of contribution necessary to win a reward.

Agents are strategic— an agent decides whether to contribute and how much total effort to put
into making contributions to the site to maximize her utility, which is the difference between her
expected benefit and cost, as described below.

Each agent who participates in the site chooses a level of total effort N ∈ (0,∞) to put into
making contributions to the site, where the effort variable N can have one of many possible
interpretations, including the time spent by an agent on contributing content on the site, the
quantity, or number of units, of contribution produced (for instance, the number of answers or
reviews contributed on a site), and so on. 4 Effort is costly: the more effort an agent puts into
making contributions to a site, the higher the cost she incurs. We use C(N) to denote the increasing
function describing how the cost to contributing varies with effort. We reserve effort level 0 to
represent the choice to not participate in the site and we assume that it has zero cost and that it

3Our work also has features in common with the analysis in [Che and Gale 2003] of the optimal design of research contests.
In both cases, firms or contributors make a sunk investment or effort decision which will affect their outcome in a contest.
Two significant differences are that in [Che and Gale 2003] the buyer wishes to purchase only one innovation and the buyer
chooses who can participate in the contest; while in our setting the site allows everyone to participate and there may be many
winners.
4We note that this model could also be applied to individual contributions such as answers to a single question, or a single
review, and used to answer questions such as whether rewards (eg virtual points) should be handed out to a set of ‘best
answers’ to a question with the k highest upvotes, or to all answers that receive more than a certain number of upvotes.
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generates no reward from the site.

Output. An agent’s output models the usefulness of her contributions to the site. We allow our
model to capture two different kinds of situations that arise in the context of online user contribu-
tions.

— Ability-independent output: In some contexts, the usefulness of an agent’s contribution is deter-
mined largely by the effort she puts in, and ability does not really significantly affect this value.
For instance, in the context of reviews on sites like Amazon or Yelp, it could be argued that there
is really no intrinsic ability difference that makes one contributor able to write better reviews than
another, and the only difference between a good (typically highly detailed, informative) review
and a mediocre, less useful, one is how much effort the reviewer puts into her review.
We will refer to such settings where output is governed by effort as having ability-independent
output, and model the output of an agent simply as X = N .

— Ability-dependent output: In other contexts, such as expertise-dependent online Q&A forums,
the value created by an agent’s contributions is determined both by an agent’s ability and her
effort— for instance, a doctor who writes several detailed answers to questions on a medical
Q&A forum generates more utility for the site’s users, or a higher level of output, than either
a layman putting in the same amount of effort, or another doctor who does not put in as much
effort. We refer to settings where high-ability agents create more value with the same effort than
low-ability agents as settings with ability-dependent output. Here, the net output produced by an
agent is her ability-scaled effort, which we model as the product of the effort N she chooses to
put in, and her intrinsic ability A, i.e., X = AN .

Observed output. A site typically cannot directly observe an agent’s output, or the usefulness of
her contributions— rather, the site can only estimate its perceived usefulness from viewer feedback
or ratings on her contributions, such as votes. Such viewer feedback is inherently noisy. For sim-
plicity, we model this by saying that the system makes a noisy observation Y of the true output X
of an agent:

Y = Xε

where ε is random noise drawn, independently for each agent, from a distribution with CDF G.5
This observed output Y might correspond, for example, to the total number of ’Helpful’ votes a
reviewer receives for all her reviews on a site like Amazon; as another example, Y could correspond
to the total reputation points a user has gathered on a site like StackOverflow, again based on noisy
evaluations of the value of her contributions.

The multiplicative noise is an important component of our model of overall, or site-wide
contributions which would not be modelled accurately by additive noise consisting of draws
from a distribution independent of N . To see this, suppose that N is interpreted as the number
of contributions (such as reviews) a user makes to a site. While it is reasonable to assume that
feedback (such as number of votes) on each single contribution is noisy to the same degree, i.e.,
consists of iid noise from a distribution F , it is not reasonable to suppose that the noise in votes on
200 answers comes from the same distribution as the noise in votes on a single answer. Thus, we
use multiplicative scaling of noise to allow our model to capture multiple contributions6.

Agent utilities. We use v to denote the value an agent derives from winning a badge (we use
the term badge to mean any form of recognition for an agent’s site-level contributions). This value

5We use a continuum of independent random variables in order to employ an exact version of the law of large numbers. For
foundations for this approach see [Judd 1985] or [Duffie and Sun 2007].
6We suppose that Y = Xε for simplicity, and note that in general the noise ε can depend on the agent’s input N . For
example, if N large reflects higher quality, such higher-quality contributions might receive more visibility and hence less
noisy evaluations; similarly an increase in quantity could also lead to overall decrease in noise

EC’13, June 16–20, 2013, Philadelphia, PA, Vol. X, No. X, Article X, Publication date: February 2013.



X:7

v from obtaining a virtual reward such as a badge, either for meeting some set goal or for beating
one’s competitors, is typically a social-psychological reward rather than a concrete monetary reward.
To begin we consider a setting in which the value to an agent of winning a badge is fixed; most
importantly it is independent of the number or fraction of users who win badges. In §5 we extend
the analysis to a setting in which the value of badge depends on how many others also win the
badge.

We note that different agents may value winning a badge differently. While we do not explicitly
model such differing values in this paper, our analysis for the case in which agents have differing
abilities (which affect their output and thus their optimal choice of effort) in Appendix A is very
similar to that which would arise from such differential valuations. That is, while these two di-
mensions of possible heterogeneity are different, they both lead to a distribution of efforts for any
given mechanism and our analysis can be easily extended to capture this additional dimension of
heterogeneity.

Let pwin denote the probability that an agent wins the badge, for some choice of effort N (and
other agents’ outputs). An agent who participates receives a payoff π which is the difference be-
tween her expected benefit (the benefit v times the probability of winning), minus the cost of effort:

π = vpwin − C(N).

Endogenous participation and reservation values. A crucial aspect of modeling incentives
in online systems based on user contributions is that participation is voluntary, i.e., each potential
contributor has a choice about whether or not to make any contribution to the site. We model the fact
that participation is a voluntary, strategic choice, via a reservation value w that the agent’s payoff π
must exceed in order for the agent to participate— specifically, if maxN π(N) < w, the agent will
choose not to participate on the site. The reservation value w models the value the agent can derive
by using her time or effort elsewhere, so that the maximum payoff obtainable from contributing
to the site (by choosing effort N optimally) must exceed this reservation value. In general, the
reservation value w can depend on agents’ abilities; for simplicity, though, we will assume equal
reservation values for all agents. We also assume that v ≥ w as otherwise participation is never
optimal.

Note that when users can strategically decide whether or not to contribute, the number (more
precisely, the mass) of actual participants cannot be assumed as given, or apriori fixed, but rather is
determined endogenously by the strategic response of agents to the reward mechanism.

Mechanisms. A mechanism in our setting determines the probability pwin with which an agent
wins the badge or reward, given her output X and the outputs of all other agents. We focus on two
very simple classes of mechanisms that are widely used in practice, and investigate the incentives
for production created by each of these mechanisms.

— Absolute standards mechanisms: An absolute standards mechanismMα rewards all contributors
whose observed output Y exceeds some set standard α.

— Relative standards mechanisms: A mechanism Mρ based on competitive standards, roughly
speaking, rewards the agents with the ρ highest observed outputs for ρ ∈ (0, 1). To formally
specify such competitive-standards mechanisms, we need to be careful about what the fraction
ρ means— since participation is endogenously determined, not all agents may contribute. There
are two natural interpretations of the relative standard ρ:
(1) ρ is the fraction of actual contributors (after participation decisions have been made). We

useMc
ρ to refer to the mechanism which rewards the top ρ fraction of the contributors with

the highest observed outputs Y .
(2) ρ can mean the fraction of potential contributors to the site, i.e., the entire mass of the

population— we use Mp
ρ to denote the mechanism that rewards a mass ρ of contributors

with the highest outputs (recall that the total population of potential contributors has mass
1).
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A site can influence which interpretation of ρ is chosen by agents by how it announces the
reward— announcing a fixed number of winners (possibly dependent on the size of the esti-
mated userbase) could be interpreted as leading to mechanismMp

ρ, whereas announcing that a
top ρ fraction of contributors will be recognized inducesMc

ρ.

Note that in these mechanisms, all winners receive the same badge or reward— that is, the mech-
anisms we consider do not reward winners differentially based on different levels of output. There
are indeed reward structures used by websites that correspond to rewarding winners differentially
based on output (for instance, a ranked list of contributors could lead to different values for different
positions in the ranked list, and sites might also award a number of badges each corresponding to
different level of achievement; see §6 for a discussion). We focus on uniform rewards (where all
winners receive the same reward and losers receive nothing) both for simplicity and because such
simple mechanisms indeed arise when either a site has only one level of rewards, or what really
matters to agents is whether they achieve recognition from the site or not, rather than the details of
the reward actually received.

Transformation of variables. For simplicity, we use a transformation of variables to their log-
arithms in our analysis, setting a = logA, n = logN , x = logX , ε = log ε, and y = log Y , so
that

y = n+ a+ ε.

We use F to denote the CDF of the transformed variable ε, so that F (ε) = G(eε). We assume that
ε has mean zero and that F has the C1 density f on (−∞,+∞) with f(ε) > 0, for all ε, and
f ′(ε) uniformly bounded. We also assume that f is single-peaked, that is, there exists ε∗ such that
f ′(ε) > 0 for all ε < ε∗, and f ′(ε) < 0 for all ε > ε∗. An example of a distribution satisfying these
conditions is the Standard Normal. The cost function is transformed so that we use the function
c(n) = C(en). We assume that c ∈ C2 with c′(n) > 0, c′′(n) > 0 for all n with c′′ bounded away
from 0.

3. INCENTIVES CREATED BY ABSOLUTE STANDARDS
A number of sites award badges to contributors for meeting some standard or level of contribution.
For instance, the popular Q&A site StackOverflow awards badges to users such as a Copy Editor
badge for editing 500 posts, a Legendary badge for earning 200 reputation at least 150 times, and
so on. Such badges, which require users to meet or exceed some absolute standard of contribu-
tion, induce a mechanism, defining incentives for contributors who will choose whether or not to
participate, and their effort levels, to maximize their utilities in response to the given standard.

In this section, we analyze the incentives created by such an absolute standards mechanismMα,
where a site rewards contributors whose (observed) output meets some absolute standard α, and ask
how the level of participation and the effort exerted by contributors, as well as how many contrib-
utors actually win badges, depend on the standard α chosen by the site. It is worth noting that with
an absolute standard, no contributor needs to reason about the behavior of any other contributors as
whether a contributor meets the absolute standard does not depend on the behavior of others7.

Here, we will analyze the ability-independent output setting when output depends only on effort
and not on ability, i.e., Y = Nε (absolute standards mechanisms in settings with ability-dependent
outputs, Y = ANε, are analyzed in Appendix A, leading to similar qualititative conclusions).
Recall that such settings where output is largely independent of ability arise when the usefulness of
a contribution depends primarily on the effort put in, such as in reviews. We will continue to refer to
agents by their abilities a, keeping in mind that while there is a continuum of agents, they all make
identical decisions since their abilities do not figure in their strategic decision problem.

7Note that naturally, this is no longer the case for absolute standards mechanisms in §5, where the value from winning
depends on the number of other winners.
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3.1. Preliminaries
Recall that we use all variables transformed to the log scale, so that effort n and observed output
y = n + ε are both elements of (−∞,∞). When the site sets an absolute standard α ∈ (−∞,∞),
an agent participating with effort level n meets the standard α to win8 if

n+ ε ≥ α,
or ε ≥ α−n, which happens with probability 1−F (α−n). The expected payoff to the agent from
choosing n is therefore

π(n) = v(1− F (α− n))− c(n),

since she incurs cost c(n) from effort n.
Conditional on participating, the first-order condition (FOC) for an effort level n∗ to be optimal,

when the site uses an absolute standard α, is that the derivative of the payoff with respect to n is
zero at n∗, i.e.,

vf(α− n∗)− c′(n∗) = 0. (1)

This FOC is also a sufficient condition if the payoff function is strictly concave in n, i.e. the second
derivative of the payoff function is negative for all n

−vf ′(α− n∗)− c′′(n∗) < 0. (2)

We will assume that the cost function c is ‘adequately’ convex for this condition to hold everywhere,
so that the first order condition (1) is a necessary and sufficient condition for n∗ to maximize π.
While strong, this assumption holds, for example, for a distribution with uniformly bounded f ′ as
we assume (such as the normal distribution) and a cost function of the form bn2 for large b.

It follows immediately from the Implicit Function Theorem that, in any open neighborhood of a
solution to (1), effort is a continuously differentiable function of the parameters α and v. Several of
our results follow from differentiating the identity

vf(α− n∗(α, v))− c′(n∗(α, v)) ≡ 0. (3)

We will assume that effort is a continuous function of its parameters, i.e. that this local continuity
can be extended globally.

Recall that agents have a reservation value w, which the optimal payoff conditional on participa-
tion must exceed if the agent is to actually participate, i.e. the agent participates if π(n∗) ≥ w, and
does not participate otherwise. We define the equilibrium effort level, accounting for the participa-
tion decisions based on the reservation value, as follows9:

n∗∗ =

{
n∗ if π(n∗) ≥ w,
−∞ otherwise.

Note that the value of−∞ for a non-participating agent corresponds to an actual production level of
en
∗∗

= 0, and occurs because of the transformation to the log scale. Note also that F (α−n∗∗) = 1
and f(α− n∗∗) = 0 when n∗∗ = −∞.

3.2. Equilibrium analysis
How do participation and effort vary as the site varies the absolute standard α it requires contributors
to meet in order to receive a badge or reward? To understand the effect of α on behavior, we first
need to understand the effect of varying α on the optimal payoff an agent can obtain. [All proofs are
provided in Appendix B.]

8We continue to use α for the absolute standard noting that it too is now in log form.
9Note that effort N (taking into account the possibility of non-participation) can be taken to lie in a compact set as for large
enough effort the payoff to participation must be less than w. So n∗ exists as the payoff function (again taking into account
the possibility of non-participation) is continuous and is maximized over a compact set.
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LEMMA 3.1 (PAYOFF MONOTONICITY). Let n∗(α, v) denote the level of effort that maximizes
a participating agent’s payoff π(n, α, v) when the site sets an absolute standard α and the value of
a badge is v. The optimal payoff conditional on participation, π(n∗(α, v), α, v) is decreasing in α
and increasing in v.

This lemma immediately tells us how participation, determined by comparing the best achievable
payoff against the reservation value, changes as the value of α sweeps its range.

THEOREM 3.2 (EQUILIBRIUM EXISTENCE AND PARTICIPATION). Consider the mechanism
Mα.

(1) An equilibrium exists for all values of the standard α.
(2) There is a threshold standard αmax such that all agents participate with non-trivial effort when

α ≤ αmax, and there is no participation for all α > αmax.
(3) The highest payoff an agent can obtain when the absolute standard is αmax, π(n∗, v, αmax), is

w.

That is, when agents endogenously decide whether or not to participate, there is an upper limit
αmax = αmax(v, c, F ) on the standard the site can require contributors to achieve to earn a badge:
when the site sets too high a standard, it is no longer profitable for agents to try to meet that standard,
and the only equilibrium is one in which no agents participate and no contributions are received.

The next natural question to ask is how the equilibrium choice of effort varies with the absolute
standard α for α ≤ αmax, i.e. for the range of standards where there is participation in equilibrium.

THEOREM 3.3 (EQUILIBRIUM EFFORT). The optimal effort n∗(α) (assuming participation) is
non-monotone in α with a unique maximum at αopt. Further, n∗(α) is increasing for α ≤ αopt and
decreasing for α ≥ αopt.
The result above describes the value of α that maximizes effort assuming participation— however,
note that the corresponding optimal payoff at αopt may be smaller than w, leading to zero partici-
pation. However, optimal effort is achieved at one of these two standards αopt or αmax, whichever
is smaller, as stated next.

LEMMA 3.4. The absolute standard α that maximizes effort is min{αmax, αopt}.
We next investigate the fraction of agents that actually meet the absolute standard and therefore

win a badge. Recall that the observed output is a noise-perturbed version of the actual output, so
that although all agents choose the same effort n∗, they have different noisy outputs and so not all
agents’ outputs will meet the standard α. Since effort n∗(α) is non-monotone in α, it is not at all
obvious, a priori, how the fraction of winners, 1−F (α− n∗(α)), varies as α increases up to αmax.
(For α > αmax, of course, agents do not participate in equilibrium so this fraction is zero). Also,
how small can the fraction of winners be— does the fraction of winners diminish down to zero as
the standard chosen by the site approaches αmax?

THEOREM 3.5 (EQUILIBRIUM MASS OF WINNERS). Let m∗(α) = 1− F (α− n∗(α)) denote
the equilibrium mass of winners when the site chooses a standard α.

(1) The mass of winners in equilibrium decreases monotonically with increasing α: for α < αmax,
∂m∗(α)

∂α
< 0.

(2) The fraction of winners at αmax, the highest absolute standard at which agents participate,
satisfies m∗(αmax) > 0, while the fraction of winners converges to one as the standard α
diverges to −∞.

This result says that while n∗(α) is non-monotone in α, the fraction of agents who meet the standard
actually decreases monotonically with α. Also, there is a minimum fraction of winners that can arise
in any equilibrium with non-zero participation, and this minimum value does not converge to 0 as
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α → αmax— therefore, the values of m∗ achievable in equilibria does not span the entire range
[0, 1]. Finally, the fraction of winners converges to one as the standard decreases to −∞ (note that
α is the logarithm of the actual standard, which converges to 0 when α→ −∞).

4. INCENTIVES CREATED BY RELATIVE STANDARDS
A number of sites— most famously Amazon, but also several others such as Y! Answers, Quora, and
TripAdvisor— award ‘Top contributor’ badges or publish top-contributor lists to the top contributors
on the site, according to some observed measure of output. As with badges for meeting absolute
standards, these rewards also appear to be extremely popular with contributors, with a large volume
of the discussion on such sites’ forums centered around how to attain such a top-contributor badge
or make it to the site’s top contributor list. Such rankings, which require contributors to exceed some
standard of contribution relative to other contributors, also induce a mechanism as in §3, defining
incentives for participation and effort for contributors. In this section, we investigate the incentives
created by such relative standards mechanisms, which reward some set of top contributors according
to observed output. As in §3, we analyze the ability-independent output setting here for simplicity;
the analysis where output depends on ability is included in Appendix A.2.

Suppose the site announces that it will reward the top ρ fraction of contributors with the highest
observed outputs Y . What are the incentives created by the mechanism Mρ defined by such a
competitive, or relative, standard— does an equilibrium exist for all values of ρ and how does
equilibrium participation and effort vary with ρ for ρ ∈ (0, 1)? (Since ρ = 0 corresponds to the site
announcing it will not reward anybody and ρ = 1 corresponds to the site rewarding everyone, we
only consider mechanismsMρ with ρ in the open interval (0, 1).)

Before we proceed with the analysis, recall that there are two natural ways to choose a set of top
contributors— one is to declare a fraction ρ of contributors as winners, while the other is to reward
some fixed number of contributors such as in a Top 10 list (or top 500 as in Amazon), which in
our model would translate to a fixed mass ρ of the population. These two choices for imposing a
relative standard lead to different mechanisms, which we refer to asMc

ρ andMp
ρ respectively (see

§2). However, for the parts of the analysis where this difference is immaterial and the two versions
of the mechanism behave identically, we simply use the notationMρ with the understanding that
the analysis applies irrespective of whether the mechanism rewards a fraction ρ of contributors, or
a mass ρ of the population.

To analyze behavior under Mρ, we first show that there exists a pure-strategy equilibrium if
and only if there exists a standard α(ρ) such that: (i) all agents who meet or exceed this standard
win; and, (ii) the equilibrium effort chosen by agents for the absolute standard α leads to exactly a
fraction ρ of agents who meet the standard.

The first condition in the following lemma, which is the first order condition for the choice of
effort, uses the continuum assumption as follows: suppose all other agents use effort n (since out-
put is independent of ability, agents are effectively homogenous). This leads to a distribution on
the observed outputs, defining a unique level of output ŷ = ŷ(n) such that 1 − F (ŷ) = ρ. The
fact that each agent is infinitesimal means this single agent’s decision will not change the level of
output ŷ at which 1 − F (ŷ) = ρ. Thus our continuum assumption allows us to use a deterministic
standard α∗(ρ) when considering the individual agent’s decision problem. We note that in practice,
contributors can potentially observe this absolute standard from observation of the past performance
of the system— indeed most online sites and discussion forums focused on reviewers wanting to
break into Amazon’s top reviewer list supply advice centered around ‘how much a reviewer needs
to review’ to make it to the list; similar discussions appear regarding the top-contributor badge on
Y! Answers as well10.

LEMMA 4.1 (IMPLEMENTATION VIA α). Consider the mechanism Mρ for any value of ρ ∈
(0, 1). There exists a pure-strategy equilibrium in Mρ if and only if there exists a pair of values

10see http://www.wikihow.com/Avoid-Losing-Top-Contributor-Badge-on-Yahoo!-Answers
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(α∗(ρ), n∗) that simultaneously satisfy the following two equations:

vf(α∗(ρ)− n∗)− c′(n∗) = 0 (4)
1− F (α∗(ρ)− n∗) = ρ, (5)

and the inequality π(n∗, α∗(ρ)) ≥ w. That is, if there exists an equilibrium of Mρ at ρ, there is
a standard α∗(ρ) such that an agent obtains a reward if and only if her observed output exceeds
α∗(ρ), i.e., if y ≥ α∗(ρ).

Recall from §3 that when the site sets an absolute standard, there is a maximum value that this
standard can take, αmax, to elicit positive participation— the fraction of winners declines as the
absolute standard increases, reaching its minimum (with non-zero participation), m∗(αmax), at the
maximum standard. Together with the preceding lemma, this gives us the following result on exis-
tence of pure-strategy equilibria inMρ.11

THEOREM 4.2. (Existence) There exists a unique pure-strategy equilibrium in the mechanism
Mρ for all values of ρ ∈ [ρmin, 1), where ρmin = m∗(αmax) is the fraction of winners in the
absolute standard mechanismMα when α = αmax.

These results, together with the monotonicity of m∗(α) in Theorem 3.5 in the absolute stan-
dards mechanismMα, also give us the following partial equivalence between absolute and relative
standards.

THEOREM 4.3 (PARTIAL EQUIVALENCE BETWEEN ABSOLUTE AND RELATIVE STANDARDS).
There is a range of values (−∞, αmax] and [ρmin, 1) for which there is an equivalence between
Mα and Mρ in the following sense: for every α ∈ (−∞, αmax] there is a unique value of
ρ ∈ [ρmin, 1) such that agents choose exactly the same equilibrium effort under Mα(α) and
Mρ(ρ), and vice versa.

What happens for ρ smaller than ρmin? The answer to this question is somewhat subtle, and
depends on which version of the relative standards mechanism is being used— whether ρ is the
fraction of actual contributors or of the total population. For both versions ofMρ, there is no longer
an equivalence between absolute and relative standards mechanisms when ρ lies in this range, albeit
the non-equivalence is of different forms: in one case no equilibrium exists for such ρ, while in the
other there exist mixed-strategy equilibria with non-zero participation.

LEMMA 4.4 (NONEXISTENCE OF EQUILIBRIA INMc
ρ). Consider the relative standards

mechanismMc
ρ, which rewards the top ρ fraction of all contributors. There exists no equilibrium in

Mc
ρ for ρ < ρmin = m∗(αmax).

A mixed strategy (in participation) is a pair (p, n∗∗) where p < 1 is the participation probability
and n∗∗ is the effort chosen by agents. (We note that in the mixed strategy equilibira we derive, we
do not actually require individual agents to each mix between participation and non-participation;
all that matters is that the population of agents is split correctly between participating and non-
participation.)

LEMMA 4.5 (MIXED-STRATEGY EQUILIBRIA INMp
ρ). Consider the relative standards

mechanismMp
ρ, which rewards the top ρ fraction of the population. There exists a mixed-strategy

equilibrium for all ρ ∈ (0, ρmin] with non-zero participation probability p and non-zero effort N .

We note that no such mixed-strategy equilibria exist for any values of ρ > ρmin— since agents’
optimal payoff π(n∗) > w for all α < αmax, all agents will strictly prefer to participate. So the only
equilibria inMρ (for both versionsMc

ρ andMp
ρ) for ρ ∈ (ρmin, 1) are the pure-strategy equilibria

where all agents always participate.

11Note that our assumption on strict concavity of the payoff function π rules out mixed strategies in effort.
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Finally, we note that equilibrium effort as a function of ρ can be derived immediately from the
implementation of ρ via an absolute standard in Lemma 4.1, and Lemma 3.3 on the behavior of n∗
with α.

COROLLARY 4.6. Let n∗∗(ρ) be the equilibrium effort chosen by agents when the site sets rel-
ative standard ρ. Then n∗∗(ρ) is non-monotone in ρ: it has a unique maximum and is weakly in-
creasing for smaller ρ and strictly decreasing for larger ρ.

Theorem 4.2 and Lemma 4.5 imply that an equilibrium exists for all values of ρ for the relative
standards mechanism Mp

ρ. For ρ greater than ρmin we have a pure strategy equilibrium and for
smaller values of ρ there is an equilibrium in which the population mixes with some positive fraction
of them contributing to the site and earning an expected net reward that equals their reservation value
for participation. This suggests that, for a site which does not know enough about the agents to be
sure about their reaction to an absolute standard or a standard relative to the mass of contributors,
the mechanism which announces a fixed number of rewards (which can be interpreted as a standard
relative to the population of potential contributors) may be superior.

5. EQUILIBRIUM ANALYSIS WHEN VALUE DEPENDS ON FRACTION OF WINNERS
We now consider the more complex situation when the value to an agent from winning depends
on how many other agents win as well. Since the value from being declared a top contributor,
either via a badge for achieving some absolute standard or featuring in a ranking, is often a social-
psychological reward rather than a monetary reward, the reward from winning might not have an
absolute utility (as in the case of monetary rewards, where the value to receiving $5 does not de-
pend12 on whether others receive the $5 as well), but rather might depend on how scarce, or special,
the achievement represented by the badge is perceived to be. Suppose, for example, that the site
chooses some absolute standard α. When the value from winning depends on how many other
agents win, it is not even clear whether equilibria exist— will there exist a level of effort n at which
the mass of winners m∗(n) leads to a value from winning for which n is indeed the right choice of
effort?

In this section, we analyze the existence and behavior of equilibria in such settings, focusing, as
before, on the case where an agent’s output depends only on her choice of quantity or effort n and
not on her ability.

Endogenous valuations model. Let v(m) denote the value from winning when the mass of
winners ism. We assume that v(m) is continuously differentiable and decreasing inm, i.e., the value
to winning decreases as winning becomes more and more commonplace, so that dv(m)/dm < 0.

The maximum possible value to a winner is v(0), which we denote by v, while the minimum
possible value from winning occurs when everyone wins so that m = 1, which we denote by
v = v(1). We assume that v > w > v, that is, the maximum possible value from winning is greater
than the reservation value, which is greater than the value from winning when everyone else wins
as well, so that the incentive problem is nontrivial.

Suppose the site chooses some absolute standard α. What does an equilibrium consist of when
the value from winning, v, depends on the mass of winners, m? We first need to specify the mass of
winners. The probability that any individual wins is 1−F (α− n∗∗). Let p represent the fraction of
individuals who participate. Then the mass of winners is

m = p[1− F (α− n∗∗)] (6)

where n∗∗ is the solution to the agent’s decision problem with value of winning v(m). Recall that
n∗∗ is the best response quantity chosen after accounting for the participation decision, by compar-
ing the payoff at n∗ against the reservation value w as defined in (3.1). In an equilibrium, no one
participates (i.e. p = 0), if the payoff to participation is less than w; and everyone participates if it is
greater than w. Note also that in an equilibrium, the agents assume that the probability of winning

12at most typical scales of participation
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is 1 − F (α − n∗∗), and given the decisions they take under this assumption, the actual probability
of winning is 1− F (α− n∗∗). Thus, we are looking for a self-fulfilling expectations equilibrium.

5.1. Existence of Equilibrium
For an equilibrium to exist, we require that there is a level of effort n∗∗ which maximizes agent
payoffs, given the fraction of winners it generates. Unlike when the value from winning v is inde-
pendent ofm, here it is not immediately obvious whether an equilibrium exists for any value of α—
for an equilibrium to exist, there must be a level of effort n∗∗ that is optimal for the value v(m)
generated from winning, where m is the mass of winners at this threshold α, with this level of effort
n∗∗.

We begin by delineating the set of standards, α, at which there is no participation in any equilib-
rium. If α is large, then the probability of winning is low unless effort is also large. For sufficiently
large α, this effort is too costly to make winning profitable, even if an agent expects no one else to
win. To describe the value of α at which this occurs, we extend the definition of αmax from Theorem
3.2 to the setting with v = v(m), as the value of α at which the payoff to participation (thus using
n∗) with the maximum possible value from winning, v, equals w:

π(αmax, n
∗(αmax, v), v) = w.

Note that αmax must exist as n∗ is continuous and since π(α, n∗(α, v), v)) → 0 < w as α → ∞
and π(α, n∗(α, v), v)→ v > w as α→ −∞. At αmax agents would participate only if they expect
no participation— the optimal payoff π is increasing in v (from Theorem 3.2), so that if the payoff is
w at v, it is less than w for any smaller v. So in any equilibrium, for α = αmax, we must have p = 0.
In fact this (p = 0 and m = p[1 − F (α − n∗(αmax, v))] = 0) is the unique equilibrium at αmax.
Also, since π∗ decreases with α, the unique equilibrium occurs at p = m = 0 for all α > αmax as
well.

For α < αmax the payoff to participation, evaluated at v and α, is greater than w, as π is decreas-
ing in α for fixed v (Theorem 3.2). So, any equilibrium must involve participation. The equilibrium
will be pure or mixed (some agents participate and some do not) depending on the value of α. To
describe this critical value of α first suppose that individuals anticipate ma as the mass of winners
and thus use the value v(ma) in their decision problem. Given α, there is a value ofma such that the
probability of winning when all agents participate and expect mass ma of winners is exactly ma.
(See the proof of Theorem 5.1.) This is the equilibrium (and it is pure) if the payoff at α and ma is
at least the reservation value w. Otherwise, there is no pure strategy equilibrium and the equilibrium
is mixed with a fraction of participants such that the payoff to participation is exactly w.

THEOREM 5.1. Consider the mechanism Mα, and suppose an agent’s value from winning is
v(m).

(1) A unique equilibrium exists for every α.
(2) If α ≥ αmax, then there is no participation in equilibrium. If α < αmax then there is participa-

tion in equilibrium.
(3) There exists a solution ma∗∗ to ma = 1 − F (α − n∗(α, v(ma))). If

π(α, n∗(α, v(ma∗∗)), v(ma∗∗)) ≥ w, then the equilibrium is a pure-strategy equilibrium
where all agents participate; otherwise, the equilibrium is in mixed strategies.

5.2. Incentives created by relative standards
The analysis of relative standards when the value of winning depends on the mass of winners follows
immediately from our previous analysis of relative standards. If a site announces that a mass of ρ of
winners will be selected, then agents know that the value of winning will be v(ρ), so the value of
winning is fixed as in Section 4. Recall that whether the equilibrium for a relative mechanism was
pure or mixed depended on the value of ρ relative to ρmin = m∗(αmax). This value ρmin continues
to be the critical value for determining the type of equilibrium, but as αmax depends on the value
of winning, ρmin depends on ρ through v(ρ). Given any ρ, there is a maximum absolute standard
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that can be implemented, αmax(ρ); denote the corresponding mass of winners at this standard,
m∗(αmax(ρ)). If ρ > m∗(αmax(ρ)), there is a pure strategy equilibrium and if ρ ≤ m∗(αmax(ρ))
there is a mixed strategy equilibrium.

THEOREM 5.2. Suppose that the value of winning depends on the fraction of the population
which wins. Consider the relative standards mechanism Mp

ρ, which rewards the top ρ fraction
of the population. If ρ ≤ ρmin(ρ) then there exists a mixed-strategy equilibrium with non-zero
participation probability p and non-zero effort. If ρ > ρmin(ρ) then there exists a pure-strategy
equilibrium.

The extension of our analysis to the case in which the value of winning depends on how com-
monplace winning is yields qualitatively similar results to those with a fixed value of winning. Most
importantly equilibria still exist and take the same forms as before. However, as value and thus ef-
fort are dependent on the number or mass of winners, the effect of standards on effort and thus the
total contribution to the site are more complex.

5.3. Uncertainty About the Mass of Winners
In this section, we investigate the impact of uncertainty about the mass of winners on agents’ equi-
librium behavior. On some sites such as StackOverflow, it is very easy to see the total number of
winners of a badge, whereas on other sites such as Y! Answers, it is much harder to infer how many
users have top-contributor badges. Clearly, this is a design choice— a site can choose whether or
not to make such information easily accesible to contributors. Does the presence or absence of in-
formation affect equilibrium outcomes, and how should a site decide which design to choose? That
is, how does uncertainty about the number of fellow winners influence equilibrium effort in this
endogenous valuation setting?

Our analysis in the previous section assumed that individuals knew the mass of winners that
would occur in equilibrium, in addition to knowing the absolute level of performance that they
must achieve to become one of those winners. Suppose instead that although individuals know the
absolute standard, they are uncertain about the actual mass of winners, and they are thus uncertain
about the value of winning. It seems reasonable to suppose that even if their expectations are not
precisely correct, they are not arbitrary— for instance, contributors typically browse content and
notice other users’ contributions and badges, which are displayed next to users’ profiles on most
such websites even if an easily accessible list of badge winners is not aggregated anywhere on
the site. We will assume that agents have a common, non-degenerate prior on m which, given the
behavior induced by their prior, has a mean that matches the actual mass of winners. The question
we are interested in is—how does this uncertainty affect their behavior?

Suppose that individuals maximize their expected payoff using their knowledge of the absolute
standard and their prior on the mass of winners. It is apparent from the individual decision problem
that if the individual believes that the mass of winners and his own chance of winning are indepen-
dent (as they are because of our continuum assumption), then the distribution on m only matters
through its effect on the expected value of winning, i.e. the expectation of v(m). The expected pay-
off from winning will be this expectation of the value of winning times the probability of winning.
Whether uncertainty increases or decreases this expected value relative to the actual value of win-
ning (the value of winning evaluated at the mean of the distribution, which is correct) is determined
by the shape of the function v(·). If v(·) is concave, then uncertainty reduces the expected payoff
to winning; alternatively, if v(·) is convex, the opposite affect occurs. To the extent that individuals’
beliefs are under the control of the site, perhaps through a choice of whether to announce the mass
of winners, the site can thus manipulate the effort that individuals put into winning.

To be precise we suppose that individuals have a common belief about the mass of winners
which is described by a density k on [0, 1] with mean m̄. The only effect of this uncertainty on
the individual decision problem is to replace v(m) with E[v(m)] using the density k. We write
K(m̄) = E[v(m)] to denote the dependence of this expectation on the mean of k. Note that K is a
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continuous function of m̄; and that K(m̄) > v(m̄) if v(·) is strictly convex, and K(m̄) < v(m̄) if
v(·) is strictly concave.

In an equilibrium, we require the mean of the prior on the mass of winners to be correct. That is,
m̄ = p[1− F (α − n∗∗)] where n∗∗ solves the individual’s decision problem with expected reward
from winning of K(m̄).

The analysis from §5.1 then applies using K(m̄) in place of v(m). Since effort conditional on
participation is increasing in v, equilibrium effort is increased by uncertainty if v(·) is convex and
reduced by uncertainty if v(·) is concave. Loosely interpreting the curvature of v as a reflection of a
typical agent’s risk aversion, this implies that equilibrium effort is reduced by uncertainty if agents
are risk averse.

LEMMA 5.3. If v(·) is strictly convex, then uncertainty about the mass of winners with a correct
mean increases equilibrium effort. If v(·) is strictly concave, then uncertainty about the mass of
winners with a correct mean reduces equilibrium effort.

6. DISCUSSION
In this paper, we took an economic approach to the question of how gamification via badges can
be most effectively used for incentivizing participation and effort on online systems based on user
contributions. Our analysis of various common design choices provides an understanding of the
incentives created by each of these designs, and in addition offers guidance, at varying levels of for-
mality, about how, and for what, a site might choose to award badges. First, our analysis shows that
if badges are awarded for relative performance to some set of top contributors, the size of this set
should be some pre-specified number that is independent of the number of contributors (such as a
Top 10 list), rather than a fraction of the number of contributors (as in a Top 1% list) in settings with
voluntary, or endogenous, participation as in the case of UGC sites. Second, a mechanism designer
who wishes to optimize elicited effort and has adequate information about the parameters of the
population can use either an absolute or relative standards mechanism, whose partial equivalence
includes the point of optimal effort. In the absence of such information, or with uncertainty about
the parameters, however, a ‘top contributor’ style mechanismMp

ρ based on competitive standards
that always elicits non-zero equilibrium participation might be, informally speaking, more desirable
than an absolute standards mechanism. Finally, our analysis suggests that when the value of a badge
diminishes with the number of its winners, the decision of whether to make winner information
easily accessible (for example, by aggregating and prominently displaying information about win-
ners) versus less explicit (such as on sites which display badge information on user profiles but do
not aggregate this information) depends only on the curvature of the value as a function of winner
fractions, which a site could potentially infer, even if very approximately, using qualitative methods
such as contributor interviews.

A number of questions remain unanswered by our work, and pose interesting directions for fur-
ther exploration. Several sites, for example, Y! Answers, simultaneously deploy badges for absolute
standards as well as top-contributor rewards. Also, a number of sites award multiple badges, corre-
sponding to different levels of accomplishments. What are the effects on equilibrium outcomes of
deploying multiple incentives simultaneously— how do these incentives interact, both when they
are of two different types (deploying Mρ and Mα simultaneously), or when they correspond to
different standards of the same type (for example, Mα(α1) and Mα(α2))? How do these parti-
tion effort from users with different abilities, and do users segregate across reward types? Another
mechanism commonly used is rank-based rewards in top-contributor lists, which our analysis, with
its assumption of uniform rewards to winners, does not address. Analyzing incentives and opti-
mal design of rank-based rewards for overall contribution is another interesting, albeit technically
challenging, direction for further research.
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A. APPENDIX: ABILITY-DEPENDENT OUTPUT
The payoff to an agent with ability a when she participates with effort level n and the site sets
absolute standard α is

π(n) = v(1− F (α− n− a))− c(n).

The first-order condition (FOC) for effort level n∗ to be optimal for an agent with ability a when
the site uses absolute standard α are that the derivative of the payoff with respect to n is zero at n∗,
i.e.,

vf(α− n∗ − a)− c′(n∗) = 0. (7)

We continue to assume that the payoff function is strictly concave in n, i.e. the second derivative of
the payoff function is negative for all n.

−vf ′(α− n∗ − a)− c′′(n∗) < 0. (8)
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A.1. Absolute standards
Now suppose that agents have heterogenous abilities q, and that an agent’s output X scales with
her ability X = NA. There are many settings where agents’ abilities affect the value of their
contribution, and therefore the measured output— for instance, an agent’s domain knowledge or
skill can significantly influence the value of an agent’s contribution in online question-and-answer
forums, such as StackOverflow or Quora. We now investigate the incentives created by an absolute
standard in terms of the effect of the incentive on agents with differing abilities.

We first consider the case where the site chooses a particular standard α, and ask how agents’
equilibrium choice of participation, and quantity of effort varies with their ability.

As before, we first investigate how the equilibrium payoff assuming participation— that is, the
optimal payoff that an agent can obtain by her choice of n— varies with ability.

LEMMA A.1. Suppose the site selects some particular absolute standard α. Let n∗(a) denote
the level of effort that maximizes the payoff π(n, a) of an agent with ability a. The optimal payoff
conditional on participation, π(n∗, a) increases with ability a.

Recall that agents make participation decisions based on how the maximum payoff obtainable
by optimally choosing n compares against their reservation value w. The fact that this maximum
payoff increases with the ability immediately gives us the following result about participation as a
function of ability for any particular absolute standard α.

COROLLARY A.2. Fix any particular absolute standard α. If an agent with ability a partici-
pates in equilibrium, all agents with ability a′ ≥ a also participate in equilibrium.

LEMMA A.3. [Participation as a function of ability.] There is a minimum threshold ability
amin = amin(α) such that agents with abilities less than amin do not participate in equilibrium; all
agents with a ≥ amin participate.

Next we ask how output varies as a function of ability. Our first lemma about production says that
the net output, which is the ability-weighted quantity, increases with increasing ability for any fixed
absolute standard α.

LEMMA A.4. The quantities n∗(a) chosen by agents in equilibrium are such that the total
ability-weighted output a+ n∗(a) is increasing in a.

However, the actual equilibrium quantities chosen by agents need not increase monotonically
with ability— in fact, the equilibrium quantity chosen by agents increases with ability up to some
ability level a∗, and then decreases beyond that.

LEMMA A.5. There is an ability level a∗ such that ∂n
∗

∂a is positive for a < a∗, and negative for
a > a∗.

Together with Lemma A.3, this tells us how the equilibrium choice of quantity varies with ability
for some particular value of the absolute standard α— agents with abilities below amin(α) do not
participate; for abilities q ∈ [amin, a

∗], equilibrium quantity n∗∗(a) increases with ability a, and for
a ≥ a∗, agents’ choice of quantity or effort decreases as ability increases beyond a∗.

Finally, we investigate how the two thresholds amin and a∗ vary with the choice of standard α.

LEMMA A.6. The minimum ability which participates amin(α) increases with the absolute
standard α.

The ability level a∗(α), corresponding to agents who choose the maximum quantity or effort,
increases with α until a threshold αmax at which no agents of any ability participate in equilibrium.

A.2. Relative standards mechanisms
Assume that the distribution of abilities is described by the CDF H on the interval [a, ā]. A result
very similar to Lemma 4.1 in the case of homogenous abilities holds here, saying that a relative
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standard ρ is implemented by an absolute standard α at which the equilibrium mass of winners (i.e.,
when agents use the optimal effort corresponding to α), is precisely ρ.

Unlike in the case of homogenous abilities, the equations that need to be simultaneously satisfied
in an equilibrium depend on whether ρ denotes the fraction of the contributors or of the total popu-
lation. We first state the results for the versionMc

ρ, where the fraction of winners ρ is measured as
a the fraction of mass of actual contributors.

LEMMA A.7 (IMPLEMENTATION VIA α). Consider the mechanismMc
ρ for any value of ρ ∈

(0, 1). There exists an equilibrium in Mc
ρ if and only if there exists an absolute standard and a

equilibrium effort function, (α∗, n∗(a)), that simultaneously satisfy the following three equations:

vf(α∗(ρ)− n∗(a)− a)− c′(n∗(a)) = 0, for all a ∈ [â, ā] (9)
ā∫̂
a

[1− F (α∗ − n∗(a)− a)]dH(a) = ρ[1−H(â)], (10)

â = a if π(n∗(a), α∗, a) ≥ w and ã otherwise, (11)

where ã is such that π(n∗(ã), α∗, ã) = w. That is, if there exists an equilibrium ofMρ at ρ, there
is a standard α∗(ρ) such that an agent obtains a reward if and only if her observed output exceeds
α∗(ρ), i.e., if Y ≥ α∗(ρ).

Just as was the case with homogeneous ability, there is a range of small ρ for which no equilibrium
exists. To see why this occurs note that any agent who participates has an expected payoff of at least
w. Thus his win probability is at least c(n(a,α))+w

v ≥ w
v > 0, where a is the agent’s ability and α

is the absolute standard that implements ρ. The fraction of winners among the participants is the
integral of these win probabilities over the participants and thus it is bounded away from zero by w

v .
That is no relative standard below w

v can be implemented.

LEMMA A.8 (IMPLEMENTATION VIA α). No relative standard ρ below w
v can be implemented

in an equilibrium ofMc
ρ.

Again, when we consider the version of the mechanism where ρ is the fraction of the population,
rather than only of the contributors, the issue of non-existence of equilibrium vanishes. In addition,
when abilities are heterogenous with an underlying distribution that is continuous on its support
with no point masses, an equilibrium exists in pure strategies for all values of ρ ∈ (0, 1). This
is in contrast to the homogenous abilities case where only mixed-strategy equilibria exist for ρ ∈
(0, ρmin); here the heterogeneity amongst agents removes the need for randomization.

LEMMA A.9. Consider the mechanismMc
ρ for any value of ρ ∈ (0, 1). There exists an equi-

librium in Mc
ρ if and only if there exists an absolute standard and a equilibrium effort function

(α∗, n∗(a)) that simultaneously satisfy the following three equations:

vf(α∗(ρ)− n∗(a)− a)− c′(n∗(a)) = 0, for all a ∈ [â, ā] (12)
ā∫̂
a

[1− F (α∗ − n∗(a)− a)]dH(a) = ρ, (13)

â = a if π(n∗(a), α∗, a) ≥ w and ã otherwise, (14)

where ã is such that π(n∗(ã), α∗, ã) = w.

Again, there is no equivalent of αmax that just discourages participation— there is always reward
to be had in ρ so that some agents always find it worthwhile to participate and get this reward.
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LEMMA A.10. An equilibrium exists in Mp
ρ for all ρ ∈ (0, 1). The minimum-ability agent

amin(ρ) who participates in equilibrium has ability that increases as ρ decreases:

∂amin(ρ)

∂ρ
< 0.

Further, amin(ρ)→ ā as ρ→ 0.

B. APPENDIX: MISSING PROOFS
LEMMA: 3.1

PROOF. Payoff at an optimal choice of effort, conditional on participation, is

π(n(α), α) = v(1− F (α− n(α)))− c(n(α)).

Thus,

dπ

dα
=
∂π

∂n

∂n∗

∂α
+
∂π

∂α
.

The first term is zero by (1). So we have

dπ

dα
=
∂π

∂α
= −vf(α− n∗) < 0.

Similarly,

dπ

dv
=
∂π

∂v
= 1− F (α− n∗) > 0.

THEOREM: 3.2

PROOF. Maximized payoff conditional on participation is continuous and decreasing in α by
Lemma (3.1). So if we show that the payoff to participation is less than w for some value of α and
the payoff to participation is more than w for some value of α, then the result follows from the
Intermediate Value Theorem. First, note that as α → −∞ the payoff to effort n = α/2 converges
to v > w as the probability of winning converges to 1 and the cost of effort converges to 0. Effort
n = α/2 is feasible, so optimal payoff is eventually greater than w. Second, note that as α→ +∞
the probability of winning converges to 0 unless effort also diverges. Optimal effort is bounded
above as the cost of effort is a strictly convex, increasing and non-negative function of effort and
benefit of effort is bounded above by v. So as α → +∞ the probability of winning conditional on
participation converges to 0 and thus the payoff to participation falls below w.

THEOREM: 3.3

PROOF. Differentiating (3) with respect to α yields

∂n∗

∂α
=

vf ′(α− n∗(α))

vf ′(α− n∗(α)) + c′′(n∗(α))
.

So by (2) we have sign[∂n
∗

∂α ] = sign[f ′(α−n∗(α))]. Let h(α) = α−n∗(α). Then ∂h(α)
∂α = 1− ∂n∗

∂α
is strictly positive and bounded away from 0 by our assumptions on c and f . By the single-peaked
assumption on f there is a unique α̂ such that f ′(α̂) = 0, f ′(α) > 0 for α < α̂ and f ′(α) < 0 for
α > α̂. Since h(α) is strictly increasing in α there is an α∗ such that h(α∗) = α̂. Then ∂n∗(α∗)

∂α = 0
and n∗ is increasing for α < α∗ and decreasing for α > α∗. If α∗ < αmax we are done. Otherwise,
n∗ increases to a maximum at αmax.

THEOREM: 3.5
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PROOF. Note that
∂m∗(α)

∂α
= −f(α− n∗(α))[1− ∂n∗(α)

∂α
].

From the proof of Theorem (3.3) we know that ∂n
∂α = vf ′(α−n∗(α))

vf ′(α−n∗(α))+c′′(n∗(α)) . So 1 − ∂n∗(α)
∂α =

c′′(n∗(α))
vf ′(α−n∗(α))+c′′(n∗(α)) > 0. Thus, ∂m

∗(α)
∂α < 0.

If m∗(αmax) = 0 then π(n∗(αmax), αmax) ≤ 0. But by the definition of αmax the payoff to
participation at αmax is w > 0. So m∗(αmax) > 0.

The proof of Theorem (3.3) shows that ∂h(α)
∂α is bounded above 0, and so h(α) diverges to −∞

as α diverges to −∞. So m∗(α) = 1− F (h(α)) converges to one.

LEMMA: 4.1

PROOF. Fix any ρ ∈ (0, 1]. A relative mechanismMρ rewards the top ρ fraction of agents, i.e.
those with output above some level α. For any α, effort is the value n∗ such that vf(α − n∗) −
c′(n∗) = 0 if π(n∗, α) ≥ w. At α and effort n∗ the fraction of winners is 1 − F (α − n∗). This
number must be ρ in an equilibrium ofMρ.

Suppose that ρ is such that there is no α satisfying the conditions in the lemma. At any α, effort
is determined by n∗∗(α). So it must be that there is no α such that 1 − F (α − n∗∗(α)) = ρ. Thus
there can be no equilibrium of the relative mechanismMρ rewarding fraction ρ.

THEOREM: 4.2

PROOF. By Lemma 4.1 it is sufficient to find a value of α such that m∗(α) = ρ for there to
exist an equilibrium of Mρ. We know from Theorem 3.5 that m∗(α) is strictly decreasing in α
and that m∗ → 1 as α → −∞. The result then follows from Theorem 3.5 which implies that
m∗ → ρmin = m∗(αmax) as α→ αmax.

THEOREM: 4.3

PROOF. Immediate from Lemma 4.1 and Theorem 4.2.

LEMMA: 4.4

PROOF. Immediate from Lemma 4.1.

LEMMA: 4.5

PROOF. A pair (p, n∗∗) is a mixed-strategy equilibrium iff there exists α(ρ) such that

vf(α∗(ρ)− n∗)− c′(n∗) = 0 (15)
π(n∗) = w (16)

p(1− F (α∗(ρ)− n∗)) = ρ. (17)

This set of simultaneous equations has an easy solution for 0 < ρ ≤ ρmin: The equilibrium effort is
n∗ = n∗(αmax), and

p(ρ) =
ρ

ρmin
.

Noting that ρmin = (1− F (α∗(ρ)− n∗)) finishes the proof.

THEOREM: 5.1

PROOF. At α = αmax individuals will participate only if they expect no one else to participate.
Anyone who participates has a positive probability of winning, so the fraction who participate, p,
must be 0 in equilibrium. Then p = m = 0 is the equilibrium for αmax. Clearly, for α > αmax

the value to participation is less than w even at the maximum value v, so no one participates. Again
p = m = 0 is an equilibrium.

EC’13, June 16–20, 2013, Philadelphia, PA, Vol. X, No. X, Article X, Publication date: February 2013.



X:22

Consider now any fixed α < αmax. For such α and v the payoff to participation is greater than
w, so in any equilibrium p > 0 and m > 0. Suppose that individuals anticipate ma as the mass
of winners and thus use the value v(ma) in their decision problem. Note that for α < αmax there
is a value of ma ∈ (0, 1) such that π(α, n∗(α, v(ma)), v(ma)) = w as the payoff is greater than
w at v(0), less than w at v(1), and the payoff to participation is continuous in ma. Call this value
of ma, ma∗. Define z = 1 − F (α − n∗(α, v(ma∗))) to be actual probability of winning at α with
belief ma∗. If z ≥ ma∗ we let p∗ = ma∗/z. Then p∗ ∈ [0, 1] and m = ma∗ are an equilibrium.
Note that in an equilibrium of this type each participant is indifferent between participation and not
participating.

Next we consider the case with z < ma∗. Let ma∗∗ be the value of ma that solves ma = 1 −
F (α−n∗(α, v(ma))). This solution must exist as at ma = 0 we have 1−F (α−n∗(α, v(0))) > 0,
at ma = 1 we have 1 − F (α − n∗(α, v(1))) < 1 and 1 − F (α − n∗(α, v(ma))) is continuous
in ma. Note that ma∗∗ < ma∗ as z < ma∗ and z = 1 − F (α − n∗(α, v(ma))) is decreasing in
ma. So π(α, n∗(α, v(ma∗∗)), v(ma∗∗)) > w and all agents participate. Thus p = 1 and ma∗∗ is an
equilibrium.

LEMMA: 5.3

PROOF. It is sufficient to show that n∗(v) is increasing in v. Differentiating (3) with respect to
v yields

∂n∗

∂v
=

f(α− n∗(α))

f ′(α− n∗(α)) + c′′(n∗(α))
> 0.

LEMMA: A.1

PROOF. Payoff at an optimal choice of effort, conditional on participation, is

π(n(α), α) = v(1− F (α− n∗(α, a)− a))− c(n∗(α, a)).

Then
dπ

da
=
∂π

∂n

∂n∗

∂a
+
∂π

∂a

The first term is zero by (7). So we have

dπ

da
=
∂π

∂a
= vf(α− n∗(α, a)− a) > 0.

LEMMA: A.3

PROOF. Follows immediately from Lemma (A.1).

LEMMA: A.4

PROOF. Rewriting (7) as an identity by substituting the optimal effort function and differentiat-
ing with respect to a yields

∂n∗(α, a)

∂a
=

−vf ′(α− n∗(α, a)− a)

vf ′(α− n∗(α, a)− a) + c′′(n∗(α, a))
.

So, by (8)

∂(a+ n∗(α, a))

∂a
=

c′′(n∗(α, a))

vf ′(α− n∗(α, a)− a) + c′′(n∗(α, a))
> 0.
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LEMMA: A.5

PROOF. Let g(α, a) = α − n∗(α, a) − a. From the proof of Lemma (A.4) we have ∂g(α,a)
∂a =

−∂n
∗(α,a)
∂a − 1 = −c′′(n∗(α,a))

vf ′(α−n∗(α,a)−a)+c′′(n∗(α,a)) which is strictly negative and bounded away from
0 by our assumptions on c and f . By the single-peaked assumption on f there is a unique ε̂ such
that f ′(ε̂) = 0, f ′(ε) > 0 for ε < ε̂ and f ′(ε) < 0 for ε > ε̂. Since g(α, a) is strictly increasing in a
there is a a∗ such that g(a∗) = ε̂. Note that a∗ need not be in [a, ā].

From the proof of Lemma (A.4) we know that the sign of ∂n∗

∂a is the opposite of the sign of
f ′(α − n∗(α, a) − a). So if a∗ ∈ [a, ā] we have ∂n∗(α,a∗)

∂a = 0 and n∗ is increasing for a < a∗

and decreasing for a > a∗. If a∗ < a then ∂n∗(α,a∗)
∂a > 0 for all a ∈ [a, ā] and if a∗ > ā then

∂n∗(α,a∗)
∂a < 0 for all a ∈ [a, ā].

LEMMA: A.6

PROOF. For any given α either no ability level participates or the minimum ability at which
participation occurs is defined by the a that solves

k(α, a) = v[1− F (α− n∗(α, a)− a)]− c(n∗(α, a))− w = 0. (18)

If there is a solution it is amin. Calculation shows that dkda = ∂k
∂a = vf(α− n∗(α, a)− a) > 0 so if

there is a solution to (18) it is unique and by the Implicit Function Theorem at any solution to (18)

dk(α, amin(α))

dα
=
∂k(α, amin(α))

∂α
+
∂k(α, amin(α))

∂a

∂amin(α)

∂α
= 0.

From Lemma (3.1) (in this lemma dependence on ability is supressed but this does not affect the
derivative with respect to a) and (A.1) we know that the first term above is negative. So ∂amin(α)

∂α
must be positive.

From the proof of Lemma (A.5), a∗(α) is the ability that solves α − n∗(α, a) − a = ε̂. So
α − n∗(α, a∗(α)) − a∗(α) ≡ 0. Note that at a∗(α), ∂n

∗(α,a)
∂a = 0 and ∂n∗(α,a)

∂α = 0. So ∂a∗(α)
∂α =

1.

LEMMA: A.7

PROOF. The third condition is that either all agents participate or ability level â is just willing to
participate. We know from Lemma A.3 that if â is willing to participate so is every higher ability.
The mass of participants is [1 − H(â)]. The second equation is that fraction ρ of the participants
win. The first equation is the usual first order condition.

LEMMA: A.8

PROOF. The expected payoff to participation is less than the probability of winning 1−F (α−n∗)
times v and this product must be at least w. So the probability of winning must be at least w/v.

LEMMA: A.9

PROOF. The third condition is that either all agents participate or ability level â is just willing to
participate. We know from Lemma A.3 that if â is willing to participate so is every higher ability.
The second equation is that mass ρ wins. The first equation is the usual first order condition.
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