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Abstract

The correlations and network structure amongst individuals in datasets today—whether explicitly ar-

ticulated, or deduced from biological or behavioral connections—pose new issues around privacy guar-

antees, because of inferences that can be made about one individual from another’s data. This motivates

quantifying privacy in networked contexts in terms of ‘inferential privacy’—which measures the change

in beliefs about an individual’s data from the result of a computation—as originally proposed by Dale-

nius in the 1970’s. Inferential privacy is implied by differential privacy when data are independent, but

can be much worse when data are correlated; indeed, simple examples, as well as a general impossi-

bility theorem of Dwork and Naor, preclude the possibility of achieving non-trivial inferential privacy

when the adversary can have arbitrary auxiliary information. In this paper, we ask how differential pri-

vacy guarantees translate to guarantees on inferential privacy in networked contexts: specifically, under

what limitations on the adversary’s information about correlations, modeled as a prior distribution over

datasets, can we deduce an inferential guarantee from a differential one?

We prove two main results. The first result pertains to distributions that satisfy a natural positive-

affiliation condition, and gives an upper bound on the inferential privacy guarantee for any differentially

private mechanism. This upper bound is matched by a simple mechanism that adds Laplace noise to the

sum of the data. The second result pertains to distributions that have weak correlations, defined in terms

of a suitable “influence matrix”. The result provides an upper bound for inferential privacy in terms of

the differential privacy parameter and the spectral norm of this matrix.
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1 Introduction

Privacy has always been a central issue in the discourse surrounding the collection and use of personal data.

As the nature of data collected online grows richer, however, fundamentally new privacy issues emerge. In

a thought-provoking piece entitled “Networked Rights and Networked Harms” [22], the sociologists Karen

Levy and danah boyd argue that the ‘networks’ surrounding data today—whether articulated (as in explicitly

declared friendships on social networks), behavioral (as in connections inferred from observed behavior), or

biological (as in genetic databases)—raise conceptually new questions that current privacy law and policy

cannot address. Levy and boyd present case studies to demonstrate how the current individual-centric legal

frameworks for privacy do not provide a means to account for the networked contexts now surrounding

personal data.

An analogous question arises on the formal front. One of computer science’s fundamental contributions

to the public debate about private data—most prominently via the literature on differential privacy1 [10]—

has been to provide a means to measure privacy loss, which enables evaluating the privacy implications of

proposed data analyses and disclosures in quantitative terms. However, differential privacy focuses on the

privacy loss to an individual by her contribution to a dataset, and therefore—by design—does not capture

all of the privacy losses from inferences that could be made about one person’s data due to its correlations

with other data in networked contexts. For instance, the privacy implications of a database such as 23andme

for one individual depend not just on that person’s own data and the computation performed, but also on her

siblings’ data.

In this paper, we look to understand the implications of such ‘networked’ data for formal privacy guar-

antees. How much can be learnt about a single individual from the result of a computation on correlated

data, and how does this relate to the differential privacy guarantee of the computation?

Inferential privacy. A natural way of assessing whether a mechanism M protects the privacy of an indi-

vidual is to ask, “Is it possible that someone, after observing the mechanism’s output, will learn a lot about

the individual’s private data?” In other words, what is the inferential privacy—the largest possible ratio

between the posterior and prior beliefs about an individual’s data after observing the result of a computation

on the database? (This quantity is identical to the differential privacy parameter of the mechanism when

individuals’ data are independent; see §2 and [18].)

The inferential privacy guarantee will depend, of course, on both the nature of the correlations in the

database and on the precise mechanism used to perform the computation. Instead of seeking to design

algorithms that achieve a particular inferential privacy guarantee—which would necessitate choosing a par-

ticular computational objective and correlation structure—we instead seek to analyze the inferential privacy

guarantees provided by differentially private algorithms. Specifically, we ask the following question: con-

sider the class of all mechanisms providing a certain differential privacy guarantee, say ε. What is the worst

possible inferential privacy guarantee for a mechanism in this class?

This question is pertinent to a policy-maker who can prescribe that analysts provide some degree of

differential privacy to individuals while releasing their results, but cannot control how—i.e., using what

specific algorithm—the analyst will provide this guarantee. In other words, rather than an algorithm designer

who wants to design an inferential privacy-preserving algorithm (for a particular scenario), this question

adopts the perspective of a policy-maker who can set privacy standards that analysts must obey, but is

agnostic to the analysts’ computational objectives. We choose the differential privacy guarantee as our

measure of privacy for many reasons: it is, at present, the only widely-agreed-upon privacy guarantee known

to provide strong protections even against arbitrary side information; there is a vast toolbox of differentially

1Differential privacy, which measures privacy via the relative amount of new information disclosed about an individual’s data

by her participation in a dataset, has emerged as the primary theoretical framework for quantifying privacy loss.

1



private algorithms and a well-understood set of composition rules for combining them to yield new ones;

finally, differential privacy is now beginning to make its way into policy and legal frameworks as a potential

means for quantifying privacy loss.

Measuring privacy loss via inferential privacy formalizes Dalenius’s [4] desideratum that “access to a

statistical database should not enable one to learn anything about an individual that could not be learned

without access”. While it is well known2 that non-trivial inferential privacy guarantees are incompatible

with non-trivial utility guarantees in the presence of arbitrary auxiliary information, our primary contribu-

tion is modeling and quantifying what degree of inferential privacy is in fact achievable under a particular

form of auxiliary information, such as that resulting from a known correlation structure or a limited set of

such structures. For example, as noted earlier, if the individuals’ rows in the database are conditionally inde-

pendent given the adversary’s auxiliary information, then the inferential privacy guarantee for any individual

collapses to her differential privacy guarantee. At the other extreme, when all individuals’ data are perfectly

correlated, the inferential privacy parameter can exceed the differential privacy parameter by a factor of n
(the number of individuals in the database) as we will see below. What happens for correlations that lie

somewhere in between these two extremes? Do product distributions belong to a broader class of distribu-

tions with benign correlations which ensure that an individual’s inferential privacy is not much worse than

her differential privacy? A key contribution of our paper (Theorem 4.2) answers this question affirmatively

while linking it to a well-known sufficient condition for ‘correlation decay’ in mathematical physics.

Correlations in networked datasets and their privacy consequences. We start with a caricature example

to begin exploring how one might address these questions in a formal framework. Consider a database which

contains an individual Athena and her (hypothetical) identical twin Adina, who is so identical to Athena that

the rows in the database corresponding to Athena and Adina are identical in (the databases corresponding to)

every possible state of the world. A differential privacy guarantee of ǫ to all database participants translates

to an inferential privacy guarantee of only 2ǫ to Athena (and her twin), since the “neighboring” database

where Athena and Adina are different simply cannot exist.3

The erosion of Athena’s privacy becomes even more extreme if the database contains n > 2 individuals

and they are all clones of Athena; a generalization of the preceding calculation now shows that the infer-

ential privacy parameter is nε. However, in reality one is unlikely to participate in a database with many

identical clones of oneself. Instead, it is interesting to consider cases with non-extreme correlations. For

example, suppose now that the database contains data from Zeus and all of his descendants, and that every

child’s bit matches the parent’s bit with probability p > 1
2 . The degree of privacy afforded to Zeus now

depends on many aspects of the model: the strength of the correlation (p), the number of individuals in the

database (n), and structural properties of the tree of family relationships—its branching factor and depth,

for instance. Which of these parameters contribute most crucially to inferential privacy? Is Zeus more likely

to be implicated by his strong correlation with a few close relatives, or by a diffuse “dragnet” of correlations

with his distant offspring?

In general, of course, networked databases, and the corresponding inferential privacy guarantees, do not

come with as neat or convenient a correlation structure as in this example. In full generality, we can represent

the idea of networked similarity via a joint distribution on databases that gives the prior probability of each

particular combination of bits. So, for example, a world where all individuals in the database are “twins”

would correspond to a joint distribution which has non-zero probability only on the all-zeros and all-ones

2see, e.g., [9, 10]
3Differential privacy guarantees that the probability of an outcome o changes by at most a factor e

ǫ amongst databases at

Hamming distance one, so that if x1,x2, and x3 denote the databases where the bits of Athena and Adina are (0, 0), (1, 0) and

(1, 1) respectively, differential privacy guarantees that Pr(o|x1) ≤ e
ǫ ·Pr(o|x2) ≤ e

2ǫ ·Pr(o|x3). From here, a simple calculation

using Bayes’ Law—see equation (3) in Section 2—implies that:
Pr(Athena=1|o)/Pr(Athena=0|o)
Pr(Athena=1)/Pr(Athena=0)

≤ e
2ǫ
, so that the inferential

privacy guarantee is 2ǫ.
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databases, whereas a world where everyone’s data is independent has multiplicative probabilities for each

database.

Such a model of correlations allows capturing a rich variety of networked contexts: in addition to situ-

ations where a single database contains sensitive information about n individuals whose data have known

correlations, it also captures the situation—perhaps closest to reality—where there are multiple databases to

which multiple individuals contribute different (but correlated) pieces of information. In this latter interpre-

tation, an inferential privacy guarantee limits the amount that an adversary may learn about one individual’s

contribution to one database, despite the correlations both across individuals and between a single individ-

ual’s contributions to different databases.4

Our results. Consider a policy-maker who specifies that an analyst must provide a certain differential

privacy guarantee, and wants to comprehend the inferential privacy consequences of this policy for the

population whose (correlated) data is being utilized. Our two main results can be interpreted as providing

guidance to such a policy maker. The first result (Theorem 3.4) supplies a closed-form expression for

the inferential privacy guarantee as a function of the differential privacy parameter when data are positively

affiliated5[24]. The second result (Theorem 4.2) allows understanding the behavior of the inferential privacy

guarantee as a function of the degree of correlation in the population; it identifies a property of the joint

distribution of data that ensures that the policy-maker can meet a given inferential privacy target via a

differential privacy requirement that is a constant-factor scaling of that target.

Among all mechanisms with a given differential privacy guarantee, which ones yield the worst inferential

privacy when data are correlated? Our first main result, Theorem 3.4, answers this question when data are

positively affiliated, in addition to giving a closed-form expression for the inferential privacy guarantee. The

answer takes the following form: we identify a simple property of mechanisms (Definition 3.3) such that any

mechanism satisfying the property achieves the worst-case guarantee. Strikingly, the form of the worst-case

mechanism does not depend on the joint distribution of the data, but only on the fact that the distribution

satisfies positive affiliation. We also provide one example of such a mechanism: a “noisy-sum mechanism”

that simply adds Laplace noise to the sum of the data. This illustrates that the worst inferential privacy

violations occur even with one of the most standard mechanisms for implementing differential privacy,

rather than some contrived mechanisms.

The aforementioned results provide a sharp bound on the inferential privacy guarantee for positively

affiliated distributions, but they say little about whether this bound is large or small in comparison to the

differential privacy guarantee. Our second main result fills this gap: it provides an upper bound on the

inferential privacy guarantee when a bounded affiliation condition is satisfied on the correlations between

individuals’ rows in a database. Representing the strengths of these correlations by an influence matrix Γ,

Theorem 4.2 asserts that if all row sums of this matrix are bounded by 1−δ then every individual’s inferential

privacy is bounded by 2ǫ/δ, regardless of whether or not the data are positively affiliated. Thus, Theorem 4.2

shows that in order to satisfy ν-inferential privacy against all distributions with (1− δ)-bounded affiliation,

it suffices for the policy-maker to set ǫ = δν/2. We complement this result with an example showing that

the ratio of inferential privacy to differential privacy can indeed be as large as Ω(1δ ), as the row sums of

the influence matrix approach 1. Thus, the equivalence between inferential and differential privacy, ν = ǫ,
which holds for independent distributions, degrades gracefully to ν = O(ǫ) as one introduces correlation

into the distribution, but only up to a point: as the row sums of the influence matrix approach 1, the ratio

ν/ǫ can diverge to infinity, becoming unbounded when the row sums exceed 1.

4We are grateful to Kobbi Nissim for suggesting this interpretation of our model.
5Positive affiliation (Definition 3.1) is a widely used notion of positive correlation amongst random variables. It is satisfied, for

example, by graphical models whose edges encode positively-correlated conditional distributions on pairs of variables.
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Techniques. Our work exposes a formal connection between the analysis of inferential privacy in net-

worked contexts and the analysis of spin systems in mathematical physics. In brief, application of a dif-

ferentially private mechanism to correlated data is analogous to application of an external field to a spin

system. Via this analogy, physical phenomena such as phase transitions can be seen to have consequences

for data privacy: they imply that small variations in the amount of correlation between individuals’ data, or

in the differential privacy parameter of a mechanism, can sometimes have gigantic consequences for infer-

ential privacy (§A.2 elaborates on this point). Statistical physics also supplies the blueprint for Theorem 4.2

and its proof: our bounded affiliation condition can be regarded as a multiplicative analogue of Dobrushin’s

Uniqueness Condition [5, 6], and our proof of Theorem 4.2 adapts the proof technique of the Dobrushin

Comparison Theorem [6, 11, 21] from the case of additive approximation to multiplicative approximation.

Since Dobrushin’s Uniqueness Condition is known to be one of the most general conditions ensuring ex-

ponential decay of correlations in physics, our Theorem 4.2 can informally be interpreted as saying that

differential privacy implies strong inferential privacy guarantees when the structure of networked correla-

tions is such that, conditional on the adversary’s side information, the correlations between individuals’ data

decay rapidly as their distance in the network increases.

Related work. Our paper adopts the term inferential privacy as a convenient shorthand for a notion that

occurs in many prior works, dating back to Dalenius [4], which is elsewhere sometimes called “before/after

privacy” [10], “semantic privacy” [18], or “noiseless privacy” [3]. Dwork and McSherry observed that

differentially private mechanisms supply inferential privacy against adversaries whose prior is a product

distribution; this was stated implicitly in [7] and formalized in [18]. However, when adversaries can have

arbitrary auxiliary information, inferential privacy becomes unattainable except by mechanisms that pro-

vide little or no utility; see [9, 19] for precise impossibility results along these lines. Responses to this

predicament have varied: some works propose stricter notions of privacy based on simulation-based seman-

tics, e.g. zero-knowledge privacy [13], others propose weaker notions based on restricting the set of prior

distributions that the adversary may have, e.g. noiseless privacy [3], and others incorporate aspects of both

responses, e.g. coupled-world privacy [2] and the Pufferfish framework [20]. Our work is similar to some

of the aforementioned ones in that we incorporate restrictions on the adversary’s prior distribution, however

our goal is quite different: rather than proposing a new privacy definition or a new class of mechanisms, we

quantify how effectively an existing class of mechanisms (ε-differentially private mechanisms) achieves an

existing privacy goal (inferential privacy).

Relations between differential privacy and network analysis have been studied by many authors—e.g.

[17] and the references therein—but this addresses a very different way in which networks relate to privacy:

the network in those works is part of the data, whereas in ours it is a description of the auxiliary information.

The exponential mechanism of McSherry and Talwar [23] can be interpreted in terms of Gibbs measures,

and Huang and Kannan [16] leveraged this interpretation and applied a non-trivial fact about free-energy

minimization to deduce consequences about incentive compatibility of exponential mechanisms. Aside

from their work, we are not aware of other applications of statistical mechanics in differential privacy.

2 Defining Inferential Privacy

In this section we specify our notation and basic assumptions and definitions. A population of n individuals

is indexed by the set [n] = {1, . . . , n}. Individual i’s private data is represented by the element xi ∈ X,

where X is a finite set. Except in §4 we will assume throughout, for simplicity, that X = {0, 1}, i.e. each

individual’s private data is a single bit. When focusing on the networked privacy guarantee for a particular

individual, we denote her index by a ∈ [n] and sometimes refer to her as “Athena”.

A database is an n-tuple x ∈ Xn representing the private data of each individual. As explained in
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Section 1, our model encodes the ‘network’ structure of the data using a probability distribution on Xn; we

denote this distribution by µ. A computation performed on the database x, whose outcome will be disclosed

to one or more parties, is called a mechanism and denoted by M. The set of possible outcomes of the

computation is O, and a generic outcome will be denoted by o ∈ O. %

Differential privacy [7, 8, 10]. For a database x = (x1, . . . , xn) and an individual i ∈ [n], we use x−i to

denote the (n− 1)-tuple formed by omitting xi from x, i.e. x−i = (x1, . . . , xi−1, xi+1, . . . , xn). We define

an equivalence relation ∼i by specifying that x ∼i x
′ ⇔ x−i = x′

−i. For a mechanism M and individual

i, the differential privacy parameter ǫi is defined by

eǫi = max

{

Pr(M(x) = o)

Pr(M(x′) = o)

∣

∣

∣

∣

x ∼i x
′, o ∈ O

}

.

For any vector ǫ = (ǫ1, . . . , ǫn) we say that M is ǫ-differentially private if the differential privacy parameter

of M with respect to i is at most ǫi, for every individual i.

Inferential privacy. We define inferential privacy as an upper bound on the (multiplicative) change in
Pr(xa=z1)
Pr(xa=z0)

when performing a Bayesian update from the prior distribution µ to the posterior distribution after

observing M(x) = o. (If M has uncountably many potential outcomes, we must instead consider doing a

Bayesian update after observing a positive-probability event M(x) ∈ S for some set of outcomes S.)

Definition 2.1. We say that mechanism M satisfies ν-inferential privacy (with respect to individual a)

if the inequality
Pr(xa=z1|M(x)∈S)
Pr(xa=z0|M(x)∈S) ≤ eν · Pr(xa=z1)

Pr(xa=z0)
holds for all z0, z1 ∈ X and all S ⊂ O such that

Pr(M(x) ∈ S) > 0. The inferential privacy parameter of M is the smallest ν with this property.

Inferential versus differential privacy. A short calculation using Bayes’ Law illuminates the relation

between these two privacy notions.

Pr(xa = z1 | M(x) ∈ S)

Pr(xa = z0 | M(x) ∈ S)
=

Pr(M(x) ∈ S | xa = z1)

Pr(M(x) ∈ S | xa = z0)
· Pr(xa = z1)

Pr(xa = z0)
.

Thus, the inferential privacy parameter of mechanism M with respect to individual a is determined by:

eνa = sup

{

Pr(M(x) ∈ S | xa = z1)

Pr(M(x) ∈ S | xa = z0)

∣

∣

∣

∣

z0, z1 ∈ X, Pr(M(x) ∈ S) > 0

}

. (1)

Equivalently, if µ0, µ1 denote the conditional distributions of x−a given that xa = z0 and xa = z1, respec-

tively, then M is νa-inferentially private if

Pr(M(z1,y1) ∈ S) ≤ eνa Pr(M(z0,y0) ∈ S) when y0 ∼ µ0, y1 ∼ µ1. (2)

For comparison, differential privacy asserts

Pr(M(z1,y) ∈ S) ≤ eǫa Pr(M(z0,y) ∈ S) ∀y. (3)

When individuals’ rows in the database are independent, µ0 = µ1 and (3) implies (2) with νa = ǫa by

averaging over y. In other words, when bits are independent, ǫa-differential privacy implies ǫa-inferential

privacy. When bits are correlated, however, this implication breaks down because the databases y0,y1

in (2) are sampled from different distributions. The ‘twins example’ from §1 illustrates concretely why

this makes a difference: if µ0 and µ1 are point-masses on (0, . . . , 0) and (1, . . . , 1), respectively, then the

inferential privacy parameter of M is determined by the equation eν = supS

{

Pr(M(1,...,1)∈S)
Pr(M(0,...,0)∈S)

}

. For an

ǫ-differentially-private mechanism this ratio may be as large as enǫ since the Hamming distance between

(0, . . . , 0) and (1, . . . , 1) is n.
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3 Positively Affiliated Distributions

Suppose a designer wants to ensure that Athena receives an inferential privacy guarantee of ν, given a joint

distribution µ on the data of individuals in the database. What is the largest differential privacy parameter

ǫ that ensures this guarantee? The question is very challenging even in the special case of binary data (i.e.,

when X = {0, 1}) because the ratio defining inferential privacy (Equation 2) involves summing exponen-

tially many terms in the numerator and denominator. Determining the worst-case value of this ratio over

all differentially private mechanisms M can be shown to be equivalent to solving a linear program with

exponentially many variables (the probability of the event M(x) ∈ S for every potential database x) and

exponentially many constraints (a differential privacy constraint for every pair of adjacent databases).

Our main result in this section answers this question when individuals’ data are binary-valued and pos-

itively affiliated [12, 24], a widely used notion of positive correlation: Theorem 3.4 gives a closed-form

formula (Equation 6) that one can invert to solve for the maximum differential privacy parameter ǫ that guar-

antees inferential privacy ν when data are positively affiliated. The theorem also characterizes the ‘extremal’

mechanisms achieving the worst-case inferential privacy guarantee in (6) as those satisfying a ‘maximally

biased’ property (Definition 3.3). Intuitively, if one wanted to signal as strongly as possible that Athena’s

bit is 1 (resp., 0), a natural strategy—given that Athena’s bit correlates positively with everyone else’s—is

to have a distinguished outcome (or set of outcomes) whose probability of being output by the mechanism

increases with the number of 1’s (resp., the number of 0’s) in the database ‘as rapidly as possible’, subject

to differential privacy constraints. Theorem 3.4 establishes that this intuition is valid under the positive af-

filiation assumption. (Interestingly, the intuition is not valid if one merely assumes that Athena’s own bit

is positively correlated with every other individual’s bit; see Remark 3.6.) Lemma 3.5 provides one simple

example of a maximally-biased mechanism, namely a “noisy-sum mechanism” that simply adds Laplace

noise to the sum of the bits in the database. Thus, the worst-case guarantee in Theorem 3.4 is achieved not

by contrived worst-case mechanisms, but by one of the most standard mechanisms in the differential privacy

literature.

We begin by defining positive affiliation, a concept that has proven extremely valuable in auction the-

ory (the analysis of interdependent value auctions), statistical mechanics, and probabilistic combinatorics.

Affiliation is a strong form of positive correlation between random variables: informally, positive affiliation

means that if some individuals’ bits are equal to 1 (or more generally, if their data is ‘large’), other individu-

als’ bits are more likely to equal 1 as well (and similarly for 0). We formally define positive affiliation for our

setting below and then state a key lemma concerning positively affiliated distributions, the FKG inequality.

Definition 3.1 (Positive affiliation). Given any two strings x1,x2 ∈ {0, 1}n, let x1 ∨x2 and x1 ∧x2 denote

their pointwise maximum and minimum, respectively. A joint distribution µ on {0, 1}n satisfies positive

affiliation if

µ(x1 ∨ x2) · µ(x1 ∧ x2) ≥ µ(x1) · µ(x2)

for all possible pairs of strings x1,x2. Equivalently, µ satisfies positive affiliation if log µ(x) is a supermod-

ular function of x ∈ {0, 1}n.

Lemma 3.2 (FKG inequality; Fortuin et al. [12]). If f, g, h are three real-valued functions on {0, 1}n such

that f and g are monotone and log h is supermodular, then

[

∑

x

f(x)g(x)h(x)

] [

∑

x

h(x)

]

≥
[

∑

x

f(x)h(x)

] [

∑

x

g(x)h(x)

]

. (4)

In order to state the main result of this section, Theorem 3.4, we must define a property that characterizes

the mechanisms whose inferential privacy parameter meets the worst-case bound stated in the theorem. We
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defer the task of describing a mechanism that satisfies the definition (or even proving that such a mechanism

exists) until Lemma 3.5 below.

Definition 3.3. For z ∈ {0, 1}, a mechanism M mapping {0, 1}n to outcome set O is called maximally

z-biased, with respect to a vector of differential privacy parameters ǫ = (ǫ1, . . . , ǫn), if there exists a set of

outcomes S ⊂ O such that Pr(M(x) ∈ S) ∝ ∏n
i=1 e

−ǫi|xi−z| for all x ∈ {0, 1}n. In this case, we call S a

distinguished outcome set for M.

Theorem 3.4. Suppose the joint distribution µ satisfies positive affiliation. Then for any z ∈ {0, 1} and any
vector of differential privacy parameters, ǫ = (ǫ1, . . . , ǫn), the maximum of the ratio

Pr(M(x) ∈ S | xa = z)

Pr(M(x) ∈ S | xa 6= z)
, (5)

over all ǫ-differentially private mechanisms M and outcome sets S, is attained when M is maximally
z-biased, with distinguished outcome set S. Therefore, the inferential privacy guarantee to individual a in
the presence of correlation structure µ and differential privacy parameters ǫ1, . . . , ǫn is given by the formula

νa = max
z∈{0,1}

{

ln

∣

∣

∣

∣

∣

∑

x=(z,y) µ
z(y) exp (−∑n

i=1 ǫi|xi − z|)
∑

x=(1−z,y) µ
1−z(y) exp (−∑n

i=1 ǫi|xi − z|)

∣

∣

∣

∣

∣

}

. (6)

Proof. Suppose z = 0 and consider any ǫ-differentially private mechanism M and outcome set S. Letting
p(x) = Pr(M(x) ∈ S), we have the identity

Pr(M(x) ∈ S | xa = 0)

Pr(M(x) ∈ S | xa = 1)
=

Pr(M(x) ∈ S and xa = 0)

Pr(M(x) ∈ S and xa = 1)

/

Pr(xa = 0)

Pr(xa = 1)
=

∑

x=(0,y) µ
0(y)p(x)

∑

x=(1,y) µ
1(y)p(x)

. (7)

When M is maximially 0-biased, with distinguished outcome set S, the right side of (7) is equal to
∑

x=(0,y) µ
0(y)e−ǫ·x

∑
x=(1,y) µ

1(y)e−ǫ·x . Thus, the z = 0 case of the theorem is equivalent to the assertion that

∑

x=(0,y) µ
0(y)p(x)

∑

x=(1,y) µ
1(y)p(x)

≤
∑

x=(0,y) µ
0(y)e−ǫ·x

∑

x=(1,y) µ
1(y)e−ǫ·x

. (8)

After cross-multiplying and simplifying, this becomes




∑

x=(0,y)

µ(x)p(x)



 ·





∑

x=(1,y)

µ(x)e−ǫ·x



 ≤





∑

x=(1,y)

µ(x)p(x)



 ·





∑

x=(0,y)

µ(x)e−ǫ·x



 . (9)

If we add
[

∑

x=(1,y) µ(x)p(x)
]

·
[

∑

x=(1,y) µ(x)e
−ǫ·x

]

to both sides, we find that (9) is equivalent to





∑

x∈{0,1}n

µ(x)p(x)



 ·





∑

x=(1,y)

µ(x)e−ǫ·x



 ≤





∑

x=(1,y)

µ(x)p(x)



 ·





∑

x∈{0,1}n

µ(x)e−ǫ·x



 . (10)

To prove (10) we will apply the FKG inequality. Set h(x) = µ(x)e−ǫ·x and note that log h is the sum of

log µ—a supermodular function—and (−ǫ) ·x, a linear function. Hence log h is supermodular. Now define

f(x) = p(x)eǫ·x and g(x) = xa. The differential privacy constraint for p implies that f is monotonically

non-decreasing; observe that g is monotonically non-decreasing as well. The FKG inequality implies
[

∑

x

f(x)h(x)

] [

∑

x

g(x)h(x)

]

≤
[

∑

x

f(x)g(x)h(x)

] [

∑

x

h(x)

]

. (11)

Substituting the definitions of f, g, h into (11) we readily see that it is equivalent to (10), which completes

the proof.
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Finally, as promised at the start of this section, we show that a noisy-sum mechanism that adds Laplace

noise to the sum of the bits in the database is maximally z-biased for every z ∈ {0, 1}. Together with

Theorem 3.4, this shows that any inferential privacy guarantee that can be proven for the noisy-sum mecha-

nism automatically extends to a guarantee for all differentially private mechanisms, when data are positively

affiliated.

Lemma 3.5. Suppose that all individuals have the same differential privacy parameter, i.e. that ǫ =
(ǫ, ǫ, . . . , ǫ) for some ǫ > 0. Consider the noisy-sum mechanism NS that samples a random Y from

the Laplace distribution with scale parameter 1/ǫ and outputs the sum Y +
∑n

i=1 xi. For all z ∈ {0, 1} the

mechanism NS is maximally z-biased.

Proof. For any x∈{0, 1}n, let |x|=∑n
i=1 xi. When z=0 and ǫ=(ǫ, ǫ, . . . , ǫ), the definition of a maximally

z-biased mechanism requires the existence of an outcome set S such that Pr(NS(x) ∈ S) ∝ e−ǫ|x|. For the

set S = (−∞, 0], the event NS(x) ∈ S coincides with the event Y ≤ −|x|. Since Y is a Laplace random

variable with scale parameter 1/ǫ, this event has probability proportional to e−ǫ|x|, as desired. When z = 1
the proof of the lemma proceeds identically, using the set S = [n,∞).

Remark 3.6. Intuitively, one might expect Theorem 3.4 to hold whenever the joint distribution µ is such that

each pair of bits is positively correlated, a weaker property than positive affiliation which requires each pair

of bits to be positively correlated even after conditioning on any possible tuple of values for the remaining

bits. In Appendix A.1 we present an example illustrating that the theorem’s conclusion can be violated (in

fact, quite drastically violated) when one only assumes pairwise positive correlation. The basic reason is

that when bits are pairwise positively correlated, it may still be the case that one individual’s bit correlates

much more strongly with a non-monotone function of the others’ bits than with any monotone function.

Remark 3.7. The quantities appearing in Theorem 3.4 have precise analogues in the physics of spin systems,

and this analogy sheds light on inferential privacy. Appendix A.2 delves into this connection in detail; in this

remark we merely sketch a dictionary for translating between inferential privacy and statistical mechanics

and discuss some consequences of this translation.

In brief, an adversary’s prior distribution on {0, 1}n corresponds to the Gibbs measure of a two-spin

system with Hamiltonian H(x) = − lnµ(x). Under this correspondence, positively affiliated distributions

correspond to ferromagnetic spin systems. The adversary’s posterior distribution after applying a maximally

0-biased (resp., maximally 1-biased) mechanism is equivalent to the Gibbs measure of the spin system after

applying the external field 1
2ǫ (resp., −1

2ǫ). The worst-case inferential privacy guarantee for Athena in

Theorem 3.4 is therefore equivalent (up to a bijective transformation) to the magnetization at Athena’s site

when the external field ±ǫ is applied to the spin system.

One of the interesting implications of this correspondence concerns phase transitions. Statistical-

mechanical systems such as magnets are known to undergo sharp transitions in their physical properties

as one varies thermodynamic quantities such as temperature and external field strength. Translating these

results from physics to the world of privacy using the dictionary outlined above, one discovers that infer-

ential privacy guarantees can undergo surprisingly sharp variations as one varies a mechanism’s differential

privacy parameter or an adversary’s belief about the strength of correlations between individuals’ bits in a

database. Theorem A.2 in the appendix formalizes these observations about phase transitions in inferential

privacy.

4 Bounded Affiliation Distributions

In this section we present a general upper bound for inferential privacy that applies under a condition that we

call bounded affiliation. Roughly speaking, bounded affiliation requires that correlations between individu-

als are sufficiently weak, in the sense that the combined influence of all other individuals on any particular
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one is sufficiently small. A very similar criterion in the statistical mechanics literature, Dobrushin’s unique-

ness condition [5, 6], is identical to ours except that it defines “influence” in terms of additive approximation

and we define it multiplicatively (Theorem 4.1). Dobrushin showed that this condition implies uniqueness

of the Gibbs measure for a specified collection of conditional distributions. Its implications for correlation

decay [14, 11, 21] and mixing times of Markov chains [1, 25, 15] were subsequently explored. Indeed,

our proof of network differential privacy under the assumption of bounded affiliation draws heavily upon

the methods of Dobrushin [6], Gross [14], and Künsch [21] on decay of correlations under Dobrushin’s

uniqueness condition.

Throughout this section (and its corresponding appendix) we assume that each individual’s private data

belongs to a finite set X rather than restricting to X = {0, 1}. This assumption does not add any complica-

tion to the theorem statements and proofs, while giving our results much greater generality. We now define

the notion of influence that is relevant to our results on distributions with bounded affiliation.

Definition 4.1. If x0, . . . , xn are jointly distributed random variables, the multiplicative influence of xj on
xi, denoted by γij , is defined by the equation

e2γij = max

{

Pr(xi ∈ S | x−i)

Pr(xi ∈ S | x′
−i)

∣

∣

∣

∣

S ⊆ supp(xi), x−i ∼j x
′
−i

}

.

In other words, the influence of xj on xi is one-half of the (individual) differential privacy parameter of xi
with respect to xj , when one regards xi as a randomized function of the database x−i. When i = j one

adopts the convention that γij = 0. The multiplicative influence matrix is the matrix Γ = (γij).

Theorem 4.2. Suppose that the joint distribution µ has a multiplicative influence matrix Γ whose spectral

norm is strictly less than 1. Let Φ = (φij) denote the matrix inverse of I − Γ. Then for any mechanism with

individual privacy parameters ǫ = (ǫi), the inferential privacy guarantee satisfies

∀i νi ≤ 2

n
∑

j=1

φijǫj. (12)

If the matrix of multiplicative influences satisfies ∀i ∑n
j=1 γijǫj ≤ (1−δ)ǫi for some δ > 0, then νi ≤ 2ǫi/δ

for all i.

Proof sketch. Let S be any set of potential outcomes of the mechanism M such that Pr(M(x) ∈ S) > 0.

Let π1 denote the conditional distribution on databases x ∈ Xn, given that M(x) ∈ S, and let π2 denote

the unconditional distribution µ, respectively. For i ∈ {1, 2} and for any function f : Xn → R, let

πi(f) denote the expected value of f under distribution πi. Also define the Lipschitz constants ρi(f) =
max{f(x)− f(x′) | x ∼i x

′}. The heart of the proof lies in showing that if f takes values in R+ then

| lnπ1(f)− lnπ2(f)| ≤ 1

2

n
∑

i,j=1

Φijǫjρi(ln f). (13)

This is done by studying the set of all vectors κ that satisfy | lnπ1(f) − lnπ2(f)| ≤ ∑n
i=1 κiρi(f)

for all f , and showing that this set is non-empty and is preserved by an affine transformation T that is

a contracting mapping of R
n (when the spectral norm of Γ is less than 1) with fixed point 1

2Φǫ. To

derive (12) from (13), use the definition of νi to choose two distinct values z0 6= z1 in X such that

νi =
∣

∣

∣ln
(

Pr(xi=z1|M(x)∈S) / Pr(xi=z0|M(x)∈S)
Pr(xi=z1) / Pr(xi=z0)

)∣

∣

∣ =
∣

∣

∣ln
(

π1(f)/π1(g)
π2(f)/π2(g)

)∣

∣

∣ , where f, g are the indicator func-

tions of xi = z0 and xi = z1, respectively. Unfortunately ρi(ln f) = ρi(ln g) = ∞ so direct application

of (13) is not useful; instead, we define a suitable averaging operator τ to smooth out f and g, thereby

improving their Lipschitz constants and enabling application of (13). A separate argument is then used to
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bound the error introduced by smoothing f and g using τ , which completes the proof of (12). Under the

hypothesis that Γǫ � (1 − δ)ǫ, the relation ν � 2
δ ǫ is easily derived from (12) by applying the formula

Φ =
∑∞

m=0 Γ
m. The full proof is presented in Appendix B.

The bound νi ≤ 2ǫi/δ in the theorem is tight up to a constant factor. This is shown in §A.2 by con-

sidering an adversary whose prior is the Ising model of a complete d-ary tree T at inverse temperature

β = tanh−1
(

1−δ
d

)

The entries of the influence matrix satisfy γij = β if (i, j) ∈ E(T ), 0 otherwise. Thus,

the row sum
∑n

j=1 γij is maximized when i is an internal node, with degree d + 1, in which case the row

sum is (d + 1) tanh−1
(

1−δ
d

)

= 1 − δ − o(1) as d → ∞. In §A.2 we apply Theorem 3.4 to show that the

inferential privacy guarantee for the Ising model on a tree satisfies ν = Ω( ǫδ ), matching the upper bound in

Theorem 4.2 up to a constant factor.

5 Conclusion

A number of immediate questions are prompted by our results, such as incorporating (ε, δ)-privacy into

our analysis of inferential guarantees (for product distributions this was achieved in [18]) and extending the

analysis in §3 to non-binary databases where an individual’s data cannot be summarized by a single bit. A

key challenge here is to find an analogue of positive affiliation for databases whose rows cannot naturally

be interpreted as elements of a lattice. More excitingly, however, the scenario of datasets with networked

correlations raises several broad directions for future work.

Designing for inferential privacy: Our work takes differentially private algorithms as a primitive and ana-

lyzes what inferential privacy is achievable with given differential privacy guarantees. This allows leveraging

the vast body of work on, and adoption of, differentially private algorithms, while remaining agnostic to the

data analyst’s objective or utility function. However if one instead assumes a particular measure of utility,

one can directly investigate the design of inferential-privacy preserving algorithms to obtain stronger guar-

antees: given some joint distribution(s) and utility objectives, what is the best inferential privacy achievable,

and what algorithms achieve it?

Inferential privacy and network structure: An intriguing set of questions arises from returning to the

original network structures that led to the model of correlated joint distributions. Note that our results in

Theorem 3.4 give the inferential privacy guarantee for a particular individual: how do inferential privacy

guarantees depend on the position of an individual in the network (for instance, imagine the central individ-

ual in a large star graph versus the leaf nodes), and how does the relation between the correlations and the

network structure play in?
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A Appendix to §3: Positively Affiliated Distributions

This appendix contains material accompanying §3 that was omitted from that section for space reasons.

A.1 Pairwise positive correlation

A weaker condition than positive affiliation is pairwise positive correlation. This property of a joint dis-

tribution µ on databases x ∈ {0, 1}n requires that for each pair of indices i, j ∈ [n], the (unconditional)

marginal distribution of the bits xi, xj satisfies

E[xixj] ≥ E[xi] · E[xj ].

If the inequality is strict for every i, j then we say µ is pairwise strictly positively correlated.

Recall Theorem 3.4, which establishes that when a joint distribution µ satisfies positive affiliation then

the worst-case inferential privacy guarantee is attained by any maximally z-biased distribution. The intuition

supporting the theorem statement might seem to suggest that the same conclusion holds whenever µ satisfies

pairwise positive correlation. In this section we show that this is not the case: if µ satisfies pairwise positive

correlation (or even strict pairwise positive correlation) there may be a mechanism whose inferential privacy

guarantee is much worse than that of any maximally z-biased mechanism.

Our construction applies when n is of the form n = 1+ rs for two positive integers r, s. For a database

x ∈ {0, 1}n we will denote one of its entries by xa and the others by xij for (i, j) ∈ [r] × [s]. The joint

distribution µ is uniform over the solution set of the system of congruences

xa +
s
∑

j=1

xij ≡ 0 (mod 2) for i = 1, . . . , r (14)

Thus, to sample from µ one draws the bits xa and xij for (i, j) ∈ [r] × [s − 1] independently from the

uniform distribution on {0, 1}, then one sets xis for all i so as to satisfy (14).
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The distribution µ is pairwise independent, hence it is pairwise positively correlated. (The calculation

of privacy parameters is much easier in the pairwise-independent case. At the end of this section we apply

a simple continuity argument to modify the example to one with pairwise strict positive correlation without

significantly changing the privacy parameters.)

Let us first calculate the inferential privacy for a mechanism M1 that calculates the number of odd

integers in the sequence

xa,
s
∑

j=1

x1j ,
s
∑

j=1

x2j , . . . ,
s
∑

j=1

xrj (15)

and adds Laplace noise (with scale parameter 1/ǫ) to the result. This is ǫ-differentially private since changing

a single bit of x changes the parity of only one element of the sequence. However, when x is sampled from

µ the number of odd integers in the sequence (15) is either 0 if xa = 0 or n if xa = 1. Hence

Pr(M1(x) ≤ 0 | xa = 0) = 1
2

Pr(M1(x) ≤ 0 | xa = 1) = 1
2e

−(r+1)ǫ

implying that the inferential privacy parameter of M1 is at least (r + 1)ǫ.
Now let us calculate the inferential privacy parameter of a maximally 0-biased mechanism M2, with

outcome o ∈ O such that Pr(M2(x) = o | x) ∝ e−ǫ|x|, where |x| denotes the sum of the bits in x. Let

T0 (resp. T1) denote the set of bit-strings in {0, 1}s having even (resp. odd) sum, and let T r
0 , T

r
1 denote

the rth Cartesian powers of these sets. The conditional distribution of (xij) given xa = 0 is the uniform

distribution on T r
0 , and the conditional distribution of (xij) given xa = 1 is the uniform distribution on T r

1 .

For y = (yij) ∈ {0, 1}rs and i ∈ [r], let yi∗ denote the s-tuple (yi1, . . . , yis). We have

Pr(M2(x) = o | xa = 0) =
∑

x=(0,y)

Pr(M2(x) = o | x) · Pr(x | xa = 0)

=
∑

y∈T r
0

e−ǫ|y| · 2−r(s−1)

=
∑

y∈T r
0

r
∏

i=1

(

e−ǫ|yi∗| · 21−s
)

=



2(1−s)
∑

z∈T0

e−ǫ|z|





r

. (16)

Similarly,

Pr(M2(x) = o | xa = 1) = e−ǫ ·



2(1−s)
∑

z∈T1

e−ǫ|z|





r

. (17)

(The extra factor of e−ǫ on the right side comes from the fact that xa = 1, which inflates the exponent in

the expression e−ǫ|x| by ǫ.) To evaluate the expressions on the right sides of (16)-(17), it is useful to let
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A0 =
∑

z∈T0
e−ǫ|z| and A1 =

∑

z∈T1
e−ǫ|z|. Then we find that

A0 +A1 =
∑

z∈{0,1}s

e−ǫ|z| = (1 + e−ǫ)s

A0 −A1 =
∑

z∈{0,1}s

(−1)|z| · e−ǫ|z| = (1− e−ǫ)s

A0 =
1

2

[

(1 + e−ǫ)s + (1− e−ǫ)s
]

A1 =
1

2

[

(1 + e−ǫ)s − (1− e−ǫ)s
]

.

Substituting these expressions into (16)-(17) we may conclude that

Pr(M2(x) = o | xa = 0)

Pr(M2(x) = o | xa = 1)
=

eǫ · Ar
0

Ar
1

= eǫ
[

(1 + e−ǫ)s + (1− e−ǫ)s

(1 + e−ǫ)s − (1− e−ǫ)s

]r

. (18)

The inferential privacy parameter of M2 is therefore given by

ν = ǫ+ r ln

[

(1 + e−ǫ)s + (1− e−ǫ)s

(1 + e−ǫ)s − (1− e−ǫ)s

]

< ǫ+ r ln

[

1 + 2

(

1− e−ǫ

1 + e−ǫ

)s]

= ǫ+ r ln [1 + 2 tanhs(ǫ)] < ǫ+ 2rǫs.

Comparing the inferential privacy parameters of M1 and M2, they are (r + 1)ǫ and ǫ+ 2rǫs, respectively,

so the inferential privacy parameter of M1 exceeds that of the maximally 0-biased mechanism, M2, by an

unbounded factor as r, s → ∞.

Under the distribution µ we have analyzed thus far, the bits of x are pairwise independent. However,

we may take a convex combination of µ with any distribution in which all pairs of bits are strictly positively

correlated—for example, a distribution that assigns equal probability to the two databases (1, . . . , 1) and

(0, . . . , 0) and zero probability to all others. In this way we obtain a distribution µ′ which satisfies pairwise

strict positive correlation and may can be made arbitrarily close to µ by varying the mixture parameter of the

convex combination. Since the inferential privacy parameter of a mechanism with respect to a given prior

distribution is a continuous function of that distribution, it follows that the inferential privacy parameters of

M1 and M2 can remain arbitrarily close to the values calculated above while imposing a requirement that

the prior on x satisfies pairwise strict positive correlation.

A.2 Connection to Ferromagnetic Spin Systems

The quantities appearing in Theorem 3.4 have precise analogues in the physics of spin systems, and this

analogy sheds light on inferential privacy. In statistical mechanics, a two-spin system composed of n sites

has a state space {±1}n and an energy function or Hamiltonian, H : {±1}n → R. The Gibbs measure of the

spin system is a probability distribution assigning to each state a probability proportional to e−βH(σ) where

β > 0 is a parameter called the inverse temperature. Application of an external field h ∈ R
n to the spin

system is modeled by subtracting a linear function from the Hamiltonian, so that it becomes H(σ)− h · σ.

The probability of state σ under the Gibbs measure then becomes

Pr(σ) = eβ[h·σ−H(σ)]/Z(β,h),
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where Z(·) is the partition function

Z(β,h) =
∑

σ∈{±1}n

eβ[
∑

i hiσi−H(σ)].

Databases x ∈ {0, 1}n are in one-to-one correspondence with states σ ∈ {±1}n under the mapping

σi = (−1)xi and its inverse mapping xi =
1
2(1−σ). Any joint distribution µ = {0, 1}n has a corresponding

Hamiltonian H(σ) = − lnµ(x) whose Gibbs distribution (at β = 1) equals µ. The positive affiliation

condition is equivalent to requiring that H is submodular, a property which is expressed by saying that the

spin system is ferromagnetic.

For a maximally 0-biased mechanism M with distinguished outcome set S, the probabilities p(x) =
Pr(M(x) ∈ S) satisfy p(x) ∝ exp(−∑n

i=1 ǫixi) = exp(−n
2 + 1

2

∑

i ǫiσi), so

µ(x)p(x) ∝ e−
n
2 +

1
2
∑

i ǫiσi−H(σ).

Application of the mechanism M is thus analogous to application of the external field 1
2ǫ at inverse temper-

ature 1. (The additive constant −n
2 in the Hamiltonian is irrelevant, since the Gibbs measure is unchanged

by an additive shift in the Hamiltonian.) Similarly, applying a maximally 1-biased mechanism is analogous

to applying the external field −1
2ǫ at inverse temperature 1.

Let ρ = µ(xa=1)
µ(xa=0) denote the prior probability ratio for Athena’s bit. For the networked privacy guarantee

in Theorem 3.4, when the maximum on the right side of (6) is achieved by a maximally 0-biased mechanism,

we have

eνa − ρ

eνa + ρ
=

∑

x=(0,y) µ(x)p(x) −
∑

x=(1,y) µ(x)p(x)
∑

x=(0,y) µ(x)p(x) +
∑

x=(1,y) µ(x)p(x)
=

∑

σ
σae

ǫ·σ/2−H(σ)

∑

σ
eǫ·σ/2−H(σ)

= E[σa | h = ǫ

2 ],

where the operator E[· | h = ǫ

2 ] denotes the expectation under the Gibbs measure corresponding to external

field h = ǫ

2 . A similar calculation in the case that a maximally 1-biased mechanism maximizes the right

side of (6) yields the relation eνa−ρ−1

eνa−ρ−1 = E[−σa | h = − ǫ

2 ]. Combining these two cases, we arrive at:

νa = max

{

ln ρ+ ln

(

1 + E[σa | h = ǫ/2]

1− E[σa | h = ǫ/2]

)

, − ln ρ− ln

(

1 + E[σa | h = −ǫ/2]

1− E[σa | h = −ǫ/2]

)}

. (19)

We will refer to E[σa] as the magnetization at site a, by analogy with the usual definition of magnetization

in statistical mechanics as the average 1
n

∑n
i=1 E [σi]. Equation (19) thus shows that the inferential privacy

guarantee for a positively affiliated distribution is completely determined by the magnetization at site a when

an external field of strength ±ǫ/2 is applied.

A.2.1 Ising models and phase transitions

Let us now apply this circle of ideas to analyze the “Zeus’s family tree” example from §1. Represent Zeus

and his progeny as the nodes of a rooted tree, and suppose that the joint distribution of the individuals’ bits

is defined by the following sampling rule: sample the bits in top-down order (from root to leaves), setting

the root’s bit to 0 or 1 with equal probability and each other node’s bit equal to the parent’s value with

probability p > 1
2 and the opposite value otherwise. This leads to a probability distribution µ in which the

probability of any x ∈ {0, 1}V (T ) is proportional to pa(x)(1− p)b(x) where a(x) denotes the number of tree

edges whose endpoints receive the same label, and b(x) is the number of edges whose endpoints receive

opposite labels. Letting J = tanh−1(2p−1) so that ln(p) = ln(1−p)+2J , and associating σ ∈ {±1}n to

x ∈ {0, 1}n via σi = (−1)xi as before, we find that up to an additive constant, lnµ(x) = J
∑

(i,j)∈E σiσj ,
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where E denotes the edge set of the tree. Hence, the joint distribution of Zeus’s family tree is equivalent to

the Gibbs measure of the Hamiltonian H(σ) = −J
∑

(i,j)∈E σiσj . Models whose Hamiltonian takes this

form (for any graph, not just trees) are known as Ising models (with interaction strength J) and are among

the most widely studied in mathematical physics.

Ising models are known to undergo phase transitions as one varies the inverse temperature or external

field. For example, in an infinite two-dimensional lattice or ∆-regular tree, there is a phenomenon known as

spontaneous magnetization where the magnetization does not converge to zero as the external field converges

to zero from above, but this phenomenon only occurs if the inverse temperature is above a critical value, βc,
that is equal to ln(1+

√
2) for the two-dimensional lattice and to 1

2 ln(1+
2

∆−2) for the ∆-regular tree. This

phenomenon of phase transitions has consequences for inferential privacy, as articulated in Theorem A.2

below. To state the theorem it is useful to make the following definition.

Definition A.1. Let D be a family of joint distributions on {0, 1}∗, with each distribution µ ∈ D being

supported on {0, 1}n for a specific value n = n(µ). For a differential privacy parameter ǫ > 0, let ν(ǫ,D)
denote the supremum, over all joint distributions µ ∈ D , of the inferential privacy guarantee corresponding

to differential privacy parameter ǫ. We say that ν is differentially enforceable with respect to D if there

exists ǫ > 0 such that ν ≤ ν(ǫ,D).

In other words, to say that ν is differentially enforceable means that a regulator can ensure ν-inferential

privacy for the individuals participating in a datasest by mandating that an analyst must satisfy ǫ-differential

privacy when releasing the results of an analysis performed on the dataset.

Theorem A.2. For a family of graphs G and a given J > 0, let D be the family of Ising models with

interaction strength J and zero external field on graphs in G . Then

a. (Sensitivity to strength of correlations.) If G is the set of trees of maximum degree ∆ = d + 1 and

J = tanh−1
(

1−δ
d

)

for some δ > 0, then every ν > 0 is differentially enforceable, and in fact ν(ǫ,D) =
Θ(ǫ/δ) for 0 < δ < ǫ ≪ 1. On the other hand, if J > tanh−1

(

1
d

)

then the set of all differentially

enforceable ν has a strictly positive infimum, νmin(J,∆).

b. (Sensitivity to differential privacy parameter.) For any 0 < ǫ0 < ǫ1 and any 1 < r < R, there exists

a joint distribution µ whose inferential privacy guarantee satisfies ν/ǫ < r when ǫ = ǫ0 but ν/ǫ > R
when ǫ = ǫ1.

Part (b) is particularly striking because it implies, for instance, that when a policy-maker contemplates

whether to mandate differential privacy parameter ǫ = 0.19 or ǫ = 0.2, this seemingly inconsequential

decision could determine whether the inferential privacy guarantee will be ν = 0.2 or ν = 20.

§A.2.2 is devoted to proving the theorem. The proof combines known facts about phase transitions with

some calculations regarding magnetization of Ising models on a tree subjected to an external field.

A.2.2 The Bethe lattice and the proof of Theorem A.2

The infinite ∆-regular tree is known in mathematical physics as the Bethe lattice with coordination number

∆. Most of the results stated in Theorem A.2 can be derived by analyzing the Ising model on the Bethe lattice

and calculating the magnetization of the root when the lattice is subjected to an external field. Throughout

this section, we will use the notation 〈σa〉 to denote the expectation of the random variable σa under the

distribution defined by the Ising model with interaction strength J at inverse temperature 1 and external

field h.
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Lemma A.3. For given J > 0, d ≥ 2, and h ∈ R, define a function y(x) by

y(x) = e2h
(

eJx+ e−J

eJ + e−Jx

)d

.

The sequence x0, x1, . . . defined recursively by x0 = 1 and xn+1 = y(xn) for n ≥ 0 converges to a limit

point x = x(J, h). This limit point is determined as follows.

• If h = 0 then x(J, h) = 1.

• If h > 0 then x(J, h) is the unique solution of the equation x = y(x) in the interval (1,∞).

• If h < 0 then x(J, h) is the unique solution of the equation x = y(x) in the interval (0, 1).

The behavior of x(J, h) near h = 0 depends on the value of J . If tanh(J) < 1
d , then x(J, h) varies

continuously with h and limh→0 x(J, h) = 1. If tanh(J) > 1
d , then the function x(J, h) is discontinuous at

h = 0, and it satisfies limhց0 x(J, h) > 1 and limhր0 x(J, h) < 1.

Proof. Rewriting the formula for y(x) as

y(x) = e2(h+Jd)

[

1− eJ − e−3J

eJ + e−Jx

]d

it is clear that for 0 ≤ x < ∞, y(x) is continuous and monotonically increasing in x and takes values

between e2(h−Jd) and e2(h+Jd). Since y is monotonic, the sequence x0, x1, x2, . . . defined in the lemma

must be monotonic: if x0 ≤ x1 then an easy induction establishes that xn ≤ xn+1 for all n, and likewise if

x0 ≥ x1 then xn ≥ xn+1 for all n. Any monotonic sequence in a closed, bounded interval must converge to

a limit, so the limit point x(J, h) is well-defined.

If h = 0 then a trivial calculation shows that xn = 1 for all n, and thus x(J, h) = 1. For h > 0
or h < 0 we must show that x(J, h) is the unique solution of y(x) = x in the interval (1,∞) or (0, 1),
respectively. First note that y(1) = e2Jh, so the sequence x0, x1, . . . is monotonically increasing when

h > 0 and decreasing when h < 0. Thus x = x(J, h) = limn→∞ xn belongs to (1,∞) when h > 0 and to

(0, 1) when h < 0. The continuity of y implies that

y(x) = lim
n→∞

y(xn) = lim
n→∞

xn+1 = x.

Thus, x satisfies x = y(x). It remains to show that this equation has a unique solution in (1,∞) when h > 0
and a unique solution in (0, 1) when h < 0.

A solution to x = y(x) is also a solution to lnx− ln y(x) = 0. The function g(x) = lnx− ln y(x) has

derivative

g′(x) =
1

x
− deJ

eJx+ e−J
+

de−J

eJ + e−Jx
=

1

x
− d(e2J − e−2J )

x2 + (e2J + e−2J)x+ 1

The equation g′(x) = 0 is equivalent to the quadratic equation x2 − 2[d sinh(2J) − cosh(2J)]x + 1 = 0.

This has at most two real roots, and if it has any real roots at all then all roots are real and their product is

equal to 1. Therefore, it has at most one root in the interval (0, 1) and at most one root in the interval (1,∞).
Furthermore, g′(x) is strictly positive at x = 0 and as x → ∞. Summarizing this discussion, there exist

positive numbers x0 ≤ x1 such that x0 · x1 = 1 and the set {x | g′(x) > 0} intersects the intervals (0, 1)
and (1,∞) in the subintervals (0, x0) and (x1,∞), respectively.

Now suppose h > 0. The set {x | x > 1 and y(x) = x} is non-empty; for example, it contains

x(J, h). Let xinf denote the infimum of this set. By continuity, y(xinf) = xinf . Since g(xinf) = 0 whereas
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g(1) < 0, we must have g′(z) > 0 for some z in the interval (1, xinf). Recalling the number x1 defined in

the previous paragraph, we must have x1 < z < xinf . Consequently g′ is strictly positive throughout the

interval (xinf ,∞), implying that there are no other solutions of g(x) = 0 in that interval. Thus, xinf is the

unique solution of y(xinf) = xinf in (1,∞), and x(J, h) = xinf . When h < 0 an analogous argument using

xsup = sup{x | x < 1 and y(x) = x} proves that x(J, h) = xsup is the unique solution of y(x) = x in the

interval (0, 1).
To analyze the behavior of x(J, h) near h = 0, it is useful to first analyze the zero set of g′(x). Recall

that g′(x) = 0 if and only if x2−2[d sinh(2J)− cosh(2J)]x+1 = 0. The discriminant test tells us that this

quadratic equation has zero, one, or two real roots according to whether d sinh(2J) − cosh(2J) − 1 is less

than, equal to, or greater than 0. Using the identities sinh(2J) = 2 sinh(J) cosh(J) = 2 cosh2(J) tanh(J)
and cosh(2J) = 2 cosh2(J)− 1 we find that d sinh(2J)− cosh(2J)− 1 = 2 cosh2(J)[d tanh(J)− 1]. So

when tanh(J) > 1
d , g′(x) > 0 for all x and the equation y(x) = x has the unique solution x(J, h). Implicit

differentiation, applied to the equation x(J, h) = y(x(J, h)), yields:

∂x
∂h = ∂y

∂h + ∂y
∂x · ∂x

∂h (20)

which can be rearranged to yield
∂x
∂h = ∂y/∂h

1−∂y/∂x . (21)

The function y is C∞ in the region x > 0, and at h = 0, x = 1 we have

∂y
∂x = d tanh(J)
∂y
∂h = 2
∂x
∂h = 2

1−d tanh(J) , (22)

so when tanh(J) < 1
d the implicit function theorem implies that x(J, h) is a differentiable, increasing

function of h in a neighborhood of h = 0.

When tanh(J) > 1
d and h = 0, we have g(1) = 0 and g′(1) < 0, so for some sufficiently small δ > 0

we have g(1 + δ) < 0, g(1 − δ) > 0. On the other hand, the fact that ln y(x) is bounded between −2Jd
and 2Jd implies that g(x) = lnx− ln y(x) tends to −∞ as x → 0 and to ∞ as x → ∞. The intermediate

value theorem implies that there exist x+ ∈ (1 + δ,∞) and x− ∈ (0, 1 − δ) such that g(x+) = g(x−) = 0.

In fact, the equation g(x) = 0 can have at most three solutions since g′(x) = 0 has only two solutions.

So, the entire solution set of g(x) = 0 is {x−, 1, x+}. Denote the function y(x) in the case h = 0 by

y0(x), to distinguish it from the case of general h; similarly define g0(x) = lnx − ln y0(x). Note that

g0(x) ≤ 0 when 1 ≤ x ≤ x+, so x ≤ y0(x) on that interval. When h > 0 we have y(x) > y0(x) for

all x, hence y(x) > x for 1 ≤ x ≤ x+. As x(J, h) is the unique solution of y(x) = x in the interval

(1,∞) it follows that x(J, h) > x+. On the other hand, for any δ > 0, we have g0(x+ + δ) > 0 and

hence, for sufficiently small h > 0, we also have g(x+ + δ) > 0. Since g(x+) < 0 and g(x(J, h)) = 0,

the intermediate value theorem implies x(J, h) belongs to the interval (x+, x++ δ) for all sufficiently small

h > 0. In other words, limhց0 x(J, h) = x+. The analogous argument for h < 0 proves that x(J, h) < x−
and that limhր0 x(J, h) = x−.

Lemma A.4. If T is a subtree of T ′ and a is any node of T , let 〈σa〉T and 〈σa〉T ′ denote the expectation

of σa in the Ising models on T and T ′, respectively, with interaction strength J > 0. For h > 0 we have

〈σa〉T ′ ≥ 〈σa〉T while for h < 0 we have 〈σa〉T ′ ≤ 〈σa〉T .

Proof. It suffices to prove the lemma in the case that h > 0 (since the h < 0 case is symmetric under

exchanging the signs +1 and −1) and that T is obtained from T ′ by deleting a single leaf node, b. The

lemma then follows by induction, since any subtree can be obtained from a tree by successively deleting

leaves.
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Let c denote the parent of b in T ′, i.e., assume that (b, c) is the unique edge of T ′ containing b. For state

σ ∈ {±1}V (T ), (σ,+) and (σ,−) denote the states in {±1}V (T ′) obtained by setting σb = +1 or σb = −1,

respectively, while keeping the spin at every node of T the same. If H(σ) = −J
∑

(i,j)∈E(T ) σiσj is the

Hamiltonian of the Ising model on T , then the Hamiltonian of the Ising model on T ′ is given by

H ′(σ,+) = −Jσc +H(σ)

H ′(σ,−) = Jσc +H(σ).

Thus, the partition functions Z(β,h), Z ′(β,h) of T, T ′ respectively satisfy

Z(β,h) =
∑

σ

eβ[h·σ−H(σ)]

Z ′(β,h) =
∑

σ

eβ[h·(σ,+)−H′(σ,+)] + eβ[h·(σ,−)−H′(σ,−)]

= 2
∑

σ

cosh(β[h+ Jσc]) e
β[h·σ−H(σ)].

Furthermore, we have

〈σa〉T =
1

Z(β,h)

∑

σ

σa e
β[h·σ−H(σ)]

〈σa〉T ′ =
1

Z ′(β,h)

∑

σ

σa e
β[h·(σ,+)−H′(σ,+)] + eβ[h·(σ,−)−H′(σ,−)]

=
2

Z ′(β,h)

∑

σ

σa cosh(β[h + Jσc]) e
β[h·σ−H(σ)].

Associating to each x ∈ {0, 1}n a state σ(x) ∈ {±1}n via σi = (−1)xi as before, we find that the logarithm

of the function x 7→ eβ[h·σ(x)−H(σ(x))] is supermodular. Furthermore, the functions x 7→ (−1)xa and

x 7→ 2 cosh(β[h + (−1)xcJ ]) are both monotonically decreasing. Thus, we may apply the FKG inequality

(Lemma 3.2) to conclude that

[

∑

σ

eβ[h·σ−H(σ)]

] [

2
∑

σ

σa cosh(β[h + Jσc])e
β[h·σ−H(σ)]

]

≥
[

2
∑

σ

cosh(β[h+ Jσc]) e
β[h·σ−H(σ)]

] [

∑

σ

σae
β[h·σ−H(σ)]

]

.

Dividing both sides by Z(β,h) · Z ′(β,h), we obtain the inequality asserted in the lemma.

Lemma A.5. If T is a finite tree of maximum degree ∆ = d+ 1, a is any node of T , and 〈σa〉 denotes the

expectation of σa in the Ising model on T with interaction strength J , inverse temperature 1, and external

field h > 0, then

ln

(

1 + 〈σa〉
1− 〈σa〉

)

<
d+ 1

d
lnx(J, h)− 2h

d
. (23)

The difference between the left and right sides converges to zero as the distance from a to the nearest node

of degree less than ∆ tends to infinity.

Proof. Define a sequence of rooted trees T0, T1, . . . recursively, by stating that T0 is a single node and Tn+1

consists of a root joined to d = ∆ − 1 children, each of whom is the root of a copy of Tn. Also define a
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sequence of trees T ∗
0 , T

∗
1 , . . ., by stating that T ∗

0 = T0 while for n > 0, T ∗
n consists of a root joined to ∆

children, each of whom is the root of a copy of Tn−1. (In other words, T ∗
n is like Tn, with the root modified

to have ∆ instead of ∆− 1 children.)

If T is any tree of maximum degree ∆ containing a node labeled a, then let r denote the distance from

a to the nearest node of degree less than ∆, and let s denote the distance from a to the farthest leaf. We can

embed T ∗
r as a subtree of T rooted at a, and we can embed T as a subtree of T ∗

s with a at the root. Applying

Theorem A.4,

〈σa〉T ∗
r
≤ 〈σa〉T ≤ 〈σa〉T ∗

s
.

To complete the proof we will show that ln
(

1+〈σa〉T∗
n

1−〈σa〉T∗
n

)

converges to d+1
d lnx(J, h) − 2h

d (from below) as

n → ∞.

For any tree T with root node k, let

Z+(T ) =
∑

σ:σk=+1

eJ
∑

i,j σiσj+h
∑

i σi

Z−(T ) =
∑

σ:σk=−1

eJ
∑

i,j σiσj+h
∑

i σi

We have 〈σk〉T = Z+(T )−Z−(T )
Z+(T )+Z−(T ) , so

1+〈σk〉T
1−〈σk〉T

= Z+(T )
Z−(T ) . For the tree Tn defined in the preceding paragraph,

the quantity xn = Z+(Tn)/Z
−(Tn) satisfies the recurrence

xn+1 =
eh(eJZ+(Tn) + e−JZ−(Tn))

d

e−h(e−JZ+(Tn) + eJZ−(Tn))d
= e2h

(

eJxn + e−J

eJ + e−Jxn

)d

= y(xn)

where the function y(·) is defined as in Lemma A.3. Applying the conclusion of that lemma, we find that xn
increases with n and xn → x(J, h) from below as n → ∞. Finally, for the quantity x∗n = Z+(T ∗

n)/Z
−(T ∗

n)
we have

x∗n =
eh(eJZ+(Tn−1) + e−JZ−(Tn−1))

d+1

e−h(e−JZ+(Tn−1) + eJZ−(Tn))d+1
= e2h

(

eJxn−1 + e−J

eJ + e−Jxn−1

)d+1

= e−2h/dx(d+1)/d
n .

Finally,

ln

(

1 + 〈σa〉
1− 〈σa〉

)

= lnx∗n = d+1
d ln(xn)− 2h

d .

The lemma follows because ln(xn) increases with n and converges to lnx(J, h) from below as n → ∞.

Corollary A.6. Let D denote the family of Ising models with interaction strength J and zero external field

on trees of maximum degree ∆. For any ǫ > 0,

ν(ǫ,D) = ∆
∆−1 lnx

(

J, ǫ
2

)

− ǫ
∆−1 . (24)

Proof. For the Ising model with zero external field, the joint distribution µ is symmetric with respect to

flipping each bit of the database x. This implies two simplifications in the formula for inferential privacy,

Equation (19). First, the odds ratio ρ = µ(xa=1)
µ(xa=0) is equal to 1. Second, both terms in the maximum on the

right-hand side of the equation are equal, so νa is equal to ln
(

1+〈σa〉
1−〈σa〉

)

, where the 〈·〉 denotes averaging over

the Gibbs measure (at inverse temperature 1) of the Ising model with interaction strength J and external

field ǫ/2. Applying Lemma A.5 we obtain (24) as a direct consequence.
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Proof of Theorem A.2. For part (a) of the theorem, Corollary A.6 justifies focusing our attention on the

function lnx(J, h) where h = ǫ
2 and ǫ > 0 varies. In particular, when tanh(J) > 1

d , we have

lim
ǫց0

ν(ǫ,D) = ∆
∆−1 lim

hց0
lnx(J, h/2) > 0

by Lemma A.3. This implies that the set of differentially enforceable ν has a strictly positive infimum, as

claimed in part (a) of Theorem A.2.

When tanh(J) = 1−δ
d , Eq. (22) for the partial derivative ∂x

∂h implies that ∂x
∂h = 2

δ at h = 0, x = 1. We

now find that

dν(ǫ,D)
dǫ

∣

∣

∣

ǫ=0
=
(

∆
∆−1

)

∂
∂ǫ

[

lnx
(

J, ǫ
2

)]

ǫ=0
−
(

1
∆−1

)

= ∆
∆−1 · 1

x(J,0) · 1
2 ·
[

∂x
∂h

]

h=0
−
(

1
∆−1

)

= ∆
∆−1 · 1 · 1

2 · 2
δ −

(

1
∆−1

)

=
(

∆
∆−1

)

1
δ −

(

1
∆−1

)

>
1

δ
.

Thus, for sufficiently small ǫ > 0, we have ν(ǫ,D) > ǫ/δ, which completes the proof of part (a) of the

theorem.

To prove part (b) we consider rooted d-ary trees for some fixed d ≥ 2. As in the proof of Lemma A.5 let

Tn denote the complete rooted d-ary tree of depth n, with root node denoted by a. For J > 0, h ∈ R define

wn(J, h) = ln

(

1 + 〈σa〉
1− 〈σa〉

)

where 〈σa〉 denotes the expectation of σa under the Ising model on Tn with interaction strength J and

external field h. In the proof of Lemma A.5 we denoted exp(wn(J, h)) by xn and proved that xn → x(J, h)
from below as n → ∞.

Now consider an adversary whose prior µ is the Ising model with interaction strength J and external

field h0. Note that the prior odds ratio ρ = µ(xa=1)
µ(xa=0) satisfies

ln ρ = ln

(

µ(σa = −1)

µ(σa = 1)

)

= ln

(

1− 〈σa〉
1 + 〈σa〉

)

= −wn(J, h0).

Substituting this into Eq. (19), we see that for a given differential privacy parameter ε the corresponding

inferential privacy guarantee is

ν(ε) = max{wn(J, h0 +
ε
2)− wn(J, h0), wn(J, h0)−wn(J, h0 − ε

2)}. (25)

To prove Theorem A.2(b) consider any 0 < ε0 < ε1 and 1 < r < R. In setting up the adversary’s prior,

choose a value of h0 that satisfies 2h0 − ε1 < 0 < 2h0 − ε0. We aim to show that for all sufficiently large

J and all n > n0(J), we have ν(ε0) < r · ε0 but ν(ε1) > R · ε1.

Let w(J, h) = limn→∞wn(J, h) = lnx(J, h). To prove that ν(ε0) < r · ε0 but ν(ε1) > R · ε1 for all

sufficiently large n, it is sufficient to prove that

w(J,h0+
1
2
ε0)−w(J,h0)

ε0
< r (26)

w(J,h0)−w(J,h0−
1
2
ε0)

ε0
< r (27)

w(J,h0)−w(J,h0−
1
2
ε1)

ε1
> R. (28)
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To prove (26)-(27) we will show that |∂w/∂h| is bounded above by 2r on the interval [h0 − 1
2ε0, h0 +

1
2ε0]

and apply the mean value theorem. Since w(J, h) = lnx(J, h) we have

∂w

∂h
=

∂x/∂h

x
=

(∂y/∂h)/x

1− ∂y/∂x
=

2

1− ∂y/∂x
, (29)

where we have used Eq. (22) and the facts that ∂y/∂h = 2y and that y(x(J, h)) = x(J, h). Now, recalling

the definition of y(x) in Lemma A.3, we differentiate with respect to x and find that

∂y

∂x
= e2h · d

(

eJx+ e−J

eJ + e−Jx

)d−1

·
(

1− e−4J

(eJ + e−Jx)2

)

= y(x) ·
(

d ·
(

1− e−4J
)

(eJx+ e−J) (eJ + e−Jx)

)

<
y(x)

x
· d

e2J
. (30)

Since y(x)/x = 1 when x = x(J, h), we may combine (29) with (30) to conclude that whenever J is large

enough that de−2J < 1 − 1
r , then the value of ∂y/∂x at x(J, h) is less than 1 − 1/r for all h > 0, and

consequently ∂w/∂h is bounded above uniformly by r, as desired.

Finally, to prove (28) we note that for x = e2h+Jd we have

y(x)

x
= e2h

(

eJx+ e−J

eJ + e−Jx

)d

e−2h−Jd =

(

e2h+Jd + e−2J

e2h+Jd−J + eJ

)d

> 1 (31)

for J sufficiently large. Recalling from the proof of Lemma A.3 that for h > 0 we have y(x) > x when

1 < x < x(J, h) and y(x) < x when x > x(J, h), we see that x(J, h) > e2h+Jd provided that h > 0 and J
is sufficiently large. An analogous argument applying the h < 0 case of Lemma A.3 shows that x(J, h) <
e2h−Jd for h < 0 and J sufficiently large. Recalling that w(J, h) = lnx(J, h) and that h0 > 0 > h0 − ε1/2
we find that

w(J, h0) > 2h0 + Jd > Jd

w(J, h0 − ε1/2) < 2h0 − ε1 − Jd < −Jd

w(J,h0)−w(J,h0−
1
2
ε1)

ε1
> 2Jd

ε1
> R

provided J is sufficiently large. This establishes (31) and concludes the proof of Theorem A.2(b).

B Appendix to §4: Bounded Affiliation Distributions

This appendix contains a full proof of Theorem 4.2. The proof requires developing a theory of “multiplica-

tive estimates” that is the multiplicative analogue of the notion of “estimate” used by Dobrushin [6], Föllmer

[11], and Künsch [21] in their proofs of the so-called Dobrushin Comparison Theorem. We define multi-

plicative estimates and build up the necessary machinery for dealing with them in §B.1. Then, in §B.2 we

prove Theorem 4.2.

B.1 Multiplicative estimates

Let S be any set of potential outcomes of the mechanism M such that Pr(M(x) ∈ S) > 0. Let π1 denote

the conditional distribution on databases x ∈ Xn, given that M(x) ∈ S, and let π2 denote the unconditional

distribution µ, respectively.
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For a ∈ {1, 2} and for any function f : Xn → R, let πa(f) denote the expected value of f under

distribution πa. Also define the Lipschitz constants

ρi(f) = max{f(x)− f(x′) | x ∼i x
′}. (32)

Let us say that a vector κ = (κi) is a multiplicative estimate if for every function f : Xn → R+ we have

| lnπ1(f)− lnπ2(f)| ≤
n
∑

i=1

κiρi(ln f). (33)

This section is devoted to proving some basic facts about multiplicative estimates that underpin the proof

of Theorem 4.2. To start, we need the following lemma.

Lemma B.1. Consider a probability space with two functions A,B taking values in the positive real num-

bers. If (supA)/(inf A) ≤ e2a and (supB)/(inf B) ≤ e2b then

E[AB]

E[A]E[B]
≤ 1 +

(e2a − 1)(e2b − 1)

(ea + eb)2
≤ eab. (34)

Proof. The hypotheses and conclusion of the lemma are invariant under rescaling each of A and B, so we

may assume without loss of generality that A is supported in the interval [e−a, ea] and that B is supported

in the interval [e−b, eb]. At each sample point ω, the following two equations hold:

[

ea−A(ω)
ea−e−a

A(ω)−e−a

ea−e−a

]

[

1 e−a

1 ea

]

=
[

1 A(ω)
]

(35)

[

eb−B(ω)
ea−e−b

B(ω)−e−b

ea−e−b

]

[

1 e−b

1 eb

]

=
[

1 B(ω)
]

(36)

(37)

Therefore, if we define the matrix-valued random variable

M(ω) =
[

ea−A(ω)
ea−e−a

A(ω)−e−a

ea−e−a

]

⊺
[

eb−B(ω)
eb−e−b

B(ω)−e−b

eb−e−b

]

we have
[

1 1
e−a ea

]

M(ω)

[

1 e−b

1 eb

]

=

[

1
A(ω)

]

[

1 B(ω)
]

=

[

1 B(ω)
A(ω) A(ω)B(ω)

]

.

Integrating over ω we obtain

[

1 1
e−a ea

]

E[M ]

[

1 e−b

1 eb

]

=

[

1 E[B]
E[A] E[AB]

]

E[M ] =

[

1 1
e−a ea

]−1 [
1 E[B]

E[A] E[AB]

] [

1 e−b

1 eb

]−1

(

ea − e−a
)

(

eb − e−b
)

E[M ] =

[

ea −1
−e−a 1

] [

1 E[B]
E[A] E[AB]

] [

eb −e−b

−1 1

]

=

[

ea+b − eaE[B]− ebE[A] + E[AB] −ea−b + eaE[B] + e−b
E[A]− E[AB]

−eb−a + e−a
E[B] + ebE[A]− E[AB] e−a−b − e−a

E[B]− e−b
E[A] + E[AB]

]

.
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Each entry of the matrix on the left side is non-negative, hence the entries on the right side are non-negative

as well. This tells us that

E[AB] ≤ min
{

eaE[B] + e−b
E[A]− ea−b, ebE[A] + e−a

E[B]− eb−a
}

= E[A]E[B] + min
{

(ea − E[A])(E[B]− e−b), (eb − E[B])(E[A]− e−a)
}

. (38)

Letting

α = 1
E[A] , β = 1

E[B] ,

we can multiply both sides of (38) by αβ to obtain

E[AB]

E[A]E[B]
≤ 1 + min{(eaα− 1)(1 − e−bβ), (ebβ − 1)(1 − e−aα)}. (39)

Denote the right side of (39) by G(α, β). We aim to find the maximum value of G(α, β) as (α, β) ranges

over the rectangle [e−a, ea]×[e−b, eb]. Note that G ≡ 1 on the boundary of this rectangle, whereas G > 1 on

the interior of the rectangle. At any point of the interior where (eaα−1)(1− e−bβ) > (ebβ−1)(1− e−aα)
we have ∂G

∂β = eb(1− e−aα) > 0, and similarly at any point of the interior where (eaα− 1)(1 − e−bβ) <

(ebβ − 1)(1 − e−aα) we have ∂G
∂α > 0. Therefore if (α, β) is a global maximum of G we must have

(eaα− 1)(1 − e−bβ) = (ebβ − 1)(1 − e−aα). Let

r =
eaα− 1

1− e−aα
=

ebβ − 1

1− e−bβ
. (40)

A manipulation using (40) yields

(eaα− 1)(1 − e−bβ) =
(

e2a − 1
)

(

e2b − 1
) r

(r + e2a) (r + e2b)
(41)

and by setting the derivative of the right side to zero we find that it is maximized at r = ea+b, when it

equates to (e2a−1)(e2b − 1)(ea + eb)−2. Therefore,

E[AB]

E[A]E[B]
≤ 1 +

(

e2a − 1
) (

e2b − 1
)

(ea + eb)
2 ,

which establishes the first inequality in (34). The prove the second inequality, we consider how 1 + (e2a −
1)(e2b − 1)(ea + eb)−2 varies as we vary a and b while holding their product fixed at some value, x2. To

begin we compute the gradient of 1 + (e2a − 1)(e2b − 1)(ea + eb)−2.

∇
[

1 + (e2a − 1)(e2b − 1)(ea + eb)−2
]

=
[(

2e2a(e2b−1)
(ea+eb)2

− 2ea(e2a−1)(e2b−1)
(ea+eb)3

) (

2e2b(e2a−1)
(ea+eb)2

− 2eb(e2a−1)(e2b−1)
(ea+eb)3

)]

=
2(ea+b − 1)

(ea + eb)3
[

ea(e2b − 1) eb(e2a − 1)
]

=
8
(

1− e−a−b
)

(ea + eb)3
[

sinh b sinh a
]

Parameterizing the curve ab = x2 by a(t) = xt, b(t) = x/t, we have ȧ(t) = a/t and ḃ(t) = −b/t, so

d

dt

[

1 + (e2a − 1)(e2b − 1)(ea + eb)−2
]

=
8
(

1− e−a−b
)

(ea + eb)3
[

sinh b sinh a
]

[

a/t
−b/t

]

=
8ab

(

1− e−a−b
)

(ea + eb)3t

(

sinh b

b
− sinh a

a

)

.
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From the Taylor series sinh y
y =

∑∞
i=0

1
(2i+1)!y

2i we see that sinh y
y is an increasing function of y ≥ 0, so

along the curve a(t) = xt, b(t) = x/t, the function 1+ (e2a− 1)(e2b − 1)(ea+ eb)−2 increases when a < b
(corresponding to t < 1) and decreases when a > b (corresponding to t > 1), reaching its maximum when

t = 1 and a = b = x. Hence

1 +

(

e2a − 1
) (

e2b − 1
)

(ea + eb)
2 ≤ 1 +

(

e2x − 1

2ex

)2

= 1 + sinh2 x = cosh2 x. (42)

Finally, by comparing Taylor series coefficients we can see that coshx ≤ ex
2/2 for all x ≥ 0, and squaring

both sides of this relation we obtain

cosh2 x ≤ ex
2
= eab. (43)

The second inequality in (34) follows by combining (42) with (43).

Lemma B.2. If κ is a multiplicative estimate, then for any i ∈ {1, . . . , n}, the vector Ti(κ) defined by

(Ti(κ))ℓ =

{

κℓ if ℓ 6= i
ǫi
2 +

∑n
j=1 γijκj if ℓ = i

(44)

is also a multiplicative estimate.

Proof. For a distribution π on Xn, a database x ∈ Xn, and an individual i, let π(· | x−i) denote the

conditional distribution of xi given x−i. In other words, π(· | x−i) is the probability distribution on X
given by

π(x | x−i) =
π(x,x−i)

∑

y∈X π(y,x−i)
. (45)

Letting W denote the vector space of real-valued functions on Xn, we define an averaging operator τi :
W → W which maps a function f to the function

τif(x) =
∑

y∈X

f(y,x−i)π(y | x−i).

Equivalently, τif is the unique function satisfying:

1. The value τif(x) depends only on x−i.

2. For any other function g whose value g(x) depends only on x−i, we have

π(fg) = π((τif)g). (46)

Note that π(f) = π(τif), as can be seen from applying (46) to the constant function g(x) = 1.

For the distributions π1 and π2 defined earlier, let us denote the corresponding averaging operators by

τ1i and τ2i . Using the identities π1(f) = π1(τ1i f) and π2(f) = π2(τ2i f), we find that

| lnπ1(f)− lnπ2(f)| ≤ | lnπ1(τ1i f)− lnπ1(τ2i f)|+ | ln π1(τ2i f)− lnπ2(τ2i f)|. (47)

We bound the two terms on the right side separately. For the first term, we write

∣

∣

∣

∣

ln

(

π1(τ1i f)

π1(τ2i f)

)∣

∣

∣

∣

=

∣

∣

∣

∣

ln

(∑

x
π1(x)τ1i f(x)

∑

x
π1(x)τ2i f(x)

)∣

∣

∣

∣

≤ max
x

∣

∣

∣

∣

ln

(

τ1i f(x)

τ2i f(x)

)∣

∣

∣

∣

. (48)
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For any particular x, we can bound the ratio
τ1i f(x)

τ2i f(x)
from above using Lemma B.1 applied to the probability

space X, under the distribution π2(· | x−i). Letting A(x) = f(x,x−i), B(x) = π1(x | x−i)/π
2(x | x−i)

we have

E[A(x)B(x)] = τ1i f(x) (49)

E[A(x)] = τ2i f(x) (50)

E[B(x)] = 1 (51)

supA
inf A ≤ eρi(ln f) (52)

supB
inf B ≤ e2ǫi . (53)

The first four of these relations are straightforward, and the last requires some justification. In the following

calculation we use the operator Pr(·) to denote probabilities of events in the sample space where x is

sampled from the original joint distribution µ, and randomized mechanism M is applied to x. Starting from

the definitions of π1 and π2, an application of Bayes’ Law yields the following calculation.

π1(x | x−i) =
Pr(x = (x,x−i) | M(x) ∈ S)

Pr(x ∈ X × {x−i} | M(x) ∈ S)

=
Pr(M(x) ∈ S | x = (x,x−i))

Pr(M(x) ∈ S | x ∈ X × {x−i})
· Pr(x = (x,x−i))

Pr(x ∈ X × {x−i})
.

The first factor on the right-hand side is between e−ǫi and eǫi , while the second factor is equal to π2(x | x−i).
This completes the proof of (53). By combining Lemma B.1 with the contents of (48)-(53) we obtain the

bound

| lnπ1(τ1i f)− lnπ1(τ2i f)| ≤ 1
2ǫiρi(ln f). (54)

To bound the second term in (47), we will make use of the following inequality, a multiplicative analogue

of inequality (3.5) in [14].

∀i, j ρj(ln τ
2
i f) ≤

{

0 if i = j

ρj(ln f) + γij ρi(ln f) if i 6= j.
(55)

The validity of (55) is evident when i = j, since the value τ2i f(x) does not depend on xi. To prove (55)

when i 6= j, we use the definition of ρj(·) to choose x,x′ ∈ Xn such that x ∼j x
′ and

ρj(ln τ
2
i f) = ln τ2i f(x

′)− ln τ2i f(x)

= ln

(

∑

x∈X

π2(x | x′
−i)f(x,x

′
−i)

)

− ln

(

∑

x∈X

π2(x | x−i)f(x,x−i)

)

≤
∣

∣

∣

∣

ln

(
∑

x∈X π2(x | x′
−i)f(x,x

′
−i)

∑

x∈X π2(x | x′
−i)f(x,x−i)

)∣

∣

∣

∣

+

∣

∣

∣

∣

ln

(
∑

x∈X π2(x | x′
−i)f(x,x−i)

∑

x∈X π2(x | x−i)f(x,x−i)

)∣

∣

∣

∣

. (56)

Using the fact that
f(x,x′

−i)
f(x,x−i)

≤ eρj(ln f) for all x ∈ X, we see that the first term on the right side of (56) is

bounded above by ρj(ln f). To bound the second term, we again make use of Lemma B.1, this time sub-

stituting A(x) = f(x,x−i) and B(x) =
π2(x|x′

−i)
π2(x|x−i)

. Taking expectations under the probability distribution
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π2(x | x−i) we have

E[A(x)B(x)] =
∑

x∈X

π2(x | x′
−i)f(x,x−i)

E[A(x)] =
∑

x∈X

π2(x | x−i)f(x,x−i)

E[B(x)] = 1
supA
inf A ≤ eρi(ln f)

supB
inf B ≤ e4γij ,

where the last line is justified by observing that the definition of γij ensures that supB ≤ e2γij and inf B ≥
e−2γij . An application of Lemma B.1 immediately implies that the second term on the right side of (56) is

bounded above by γijρi(ln f). This completes the proof of (55).

Now, our hypothesis that κ is a multiplicative estimate implies, by definition, that

| lnπ1(τ2i f)− lnπ2(τ2i f)| ≤
n
∑

j=1

κjρj(ln τ
2
i f) ≤

∑

j 6=i

κjρj(ln f) +
n
∑

j=1

κjγij ρi(ln f) (57)

where we have applied (55) to derive the second inequality. Combining (47), (54), and (57) we now have

| lnπ1(f)− lnπ2(f)| ≤
∑

j 6=i

κjρj(ln f) +





1
2ǫi +

n
∑

j=1

γijκj



 ρi(ln f).

Lemma B.3. If κ is a multiplicative estimate, then the vector T (κ) = 1
2nǫ +

(

1− 1
n

)

κ + 1
nΓκ is also a

multiplicative estimate.

Proof. Averaging (44) over i = 1, . . . , n, we find that T (κ) = 1
nTi(κ). The lemma follows because the

set of multiplicative estimates is closed under convex combinations, as is evident from the definition of a

multiplicative estimate.

Lemma B.4. If the influence matrix Γ has spectral norm strictly less than 1, then 1
2Φǫ is an estimate.

Proof. To begin, let us prove that the set of multiplicative estimates is non-empty; in fact, it contains the

vector 1 = (1, . . . , 1). To see this, consider any f : Xn = R+ and choose x ∈ argmax(f),x′ ∈
argmin(f). Define a sequence (x(k))nk=0 by the formula

x
(k)
i =

{

xi if i > k

x′i if i ≤ k
.

Note that x(0) = x, x(n) = x′, and x(k−1) ∼k x(k) for k = 1, . . . , n. Therefore,

| lnπ1(f)− lnπ2(f)| ≤ |max(ln f)−min(ln f)| = | ln f(x)− ln f(x′)|

≤
n
∑

k=1

| ln f(x(k−1))− ln f(x(k))| ≤
n
∑

k=1

ρk(ln f),

so 1 is an estimate as claimed.
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Now let Υ =
(

1− 1
n

)

I + 1
nΓ. Applying Theorem B.3 inductively, each element of the sequence

Tm(1) =
1

2n

(

m−1
∑

k=0

Υk

)

ǫ+Υm1

is a multiplicative estimate. If ‖Γ‖ < 1 (where ‖ · ‖ denotes spectral norm) then Υ also has spectral norm

less than 1 because it is a convex combination of Γ and I . This implies that the sequence (Tm(κ))∞m=0

converges to 1
2n(I −Υ)−1

ǫ. Now,

(I −Υ)−1 = ( 1nI − 1
nΓ)

−1 = n(I − Γ)−1,

so the sequence (Tm(κ))∞m=0 converges to 1
2Φǫ. The proof concludes with the observation that a limit of

multiplicative estimates is again a multiplicative estimate.

B.2 Proof of Theorem 4.2

Let us begin by restating Theorem 4.2.

Theorem B.5. Suppose that the joint distribution x has a multiplicative influence matrix Γ whose spectral

norm is strictly less than 1. Let Φ = (φij) denote the matrix inverse of I − Γ. Then for any mechanism with

individual privacy parameters ǫ = (ǫi), the networked differential privacy guarantee satisfies

∀i νi ≤ 2

n
∑

j=1

φijǫj. (58)

If the matrix of multiplicative influences satisfies

∀i
n
∑

j=1

γijǫj ≤ (1− δ)ǫi (59)

for some δ > 0, then

∀i νi ≤ 2ǫi/δ. (60)

Proof. Above, in Lemma B.4, we proved that 1
2Φǫ is a multiplicative estimate. In other words, for any

f : Xn → R+ it holds that

∣

∣lnπ1(f)− lnπ2(f)
∣

∣ ≤ 1
2

n
∑

i,j=1

Φijǫjρi(ln f). (61)

To prove (58), we are required to show the following: if z0, z1 are any two distinct elements of X such that

Pr(xi = z0) and Pr(xi = z1) are both positive, then

∣

∣

∣

∣

ln

(

Pr(xi = z1 | M(x) ∈ S) / Pr(xi = z0 | M(x) ∈ S)

Pr(xi = z1) / Pr(xi = z0)

)∣

∣

∣

∣

≤ 2

n
∑

j=1

Φijǫj. (62)

We will do this by setting f and g to be the indicator functions of the events xi = z0 and xi = z1,

respectively. Then (62) can be rewritten in the form

∣

∣

∣

∣

ln

(

π1(f)/π1(g)

π2(f)/π2(g)

)∣

∣

∣

∣

≤ 2

n
∑

j=1

Φijǫj. (63)
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If the Lipschitz constants of f and g satisfied ρj(ln f) = ρj(ln g) = 0 for j 6= i and ρi(ln f), ρi(ln g) ≤ 1,

then (63) would follow immediately by applying (61) to f and g separately. Instead ρi(f) = ρi(g) = ∞ so

we will have to be more indirect, applying (61) to τf and τg where τ is an averaging operator designed to

smooth out f and g, thereby improving their Lipschitz constants. Specifically, define

τf(x) = π2(z0,x−i), τg(x) = π2(z1,x−i).

It is useful to describe τf and τg in terms of the following sampling process: generate a coupled pair of

samples (x′,x′′) by sampling x′ from π2, then resampling x′′i from the conditional distribution π2(· | x′
−i),

and then assembling the database x′′ = (x′′i ,x
′
−i). Then τf(x) is the conditional probability that x′′i = z0

given that x′ = x, and τg is defined similarly using z1 instead of z0. An important observation is that

the distribution of (x′,x′′) is exchangeable, i.e. (x′,x′′) and (x′′,x′) have the same probability. From this

observation we can immediately conclude that

π2(τf) = π2(f), π2(τg) = π2(g), (64)

because π2(τf) is the probability that x′′i = z0 whereas π2(f) is the probability that x′i = z0, and similarly

for g and z1. Our strategy for proving (63) will be to bound the left side using

∣

∣

∣

∣

ln

(

π1(f)/π1(g)

π2(f)/π2(g)

)∣

∣

∣

∣

=

∣

∣

∣

∣

ln

(

π1(f)/π1(g)

π2(τf)/π2(τg)

)∣

∣

∣

∣

≤
∣

∣

∣

∣

ln

(

π1(f)/π1(g)

π1(τf)/π1(τg)

)∣

∣

∣

∣

+

∣

∣

∣

∣

ln

(

π1(τf)/π1(τg)

π2(τf)/π2(τg)

)∣

∣

∣

∣

(65)

and to bound the two terms on the last line separately. For the second term we will use (61) applied to τf
and τg separately. This requires us to bound the Lipschitz constants ρk(ln τf) and ρk(ln τg). Since τf(x)
and τg(x) do not depend on xi, it is immediate that ρf (ln τf) = ρi(ln τg) = 0. For k 6= i, the definition of

the multiplicative influence parameter γik leads to the bounds

ρk(ln τf), ρk(ln τg) ≤ 2γik. (66)

Note that (66) also holds when k = i since γii = 0. Applying (61) to τf and τg yields the bound

∣

∣

∣

∣

ln

(

π1(τf)/π1(τg)

π2(τf)/π2(τg)

)∣

∣

∣

∣

≤
∣

∣lnπ1(τf)− lnπ2(τf)
∣

∣+
∣

∣lnπ1(τg)− lnπ2(τg)
∣

∣

≤ 2 · 1
2
·

n
∑

k,j=1

(2γik)Φkjǫj = 2(ΓΦǫ)i (67)

Recalling that Φ = (I −Γ)−1, we have (I −Γ)Φ = I and hence ΓΦ = Φ− I . Thus, we can rewrite (67) as

∣

∣

∣

∣

ln

(

π1(τf)/π1(τg)

π2(τf)/π2(τg)

)∣

∣

∣

∣

≤ 2

n
∑

j=1

Φijǫj − 2ǫi. (68)

Now we turn to bounding the first term in (65). Letting o denote the random variable representing the

mechanism’s outcome, M(x). Bayes’ Law tells us that

π1(x) =
π2(x) Pr(o ∈ S | x)

Pr(o ∈ S)
.
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Therefore,

π1(τg)

π1(g)
=

∑

x
π2(z1 | x−i)π

1(x)
∑

x
g(x)π1(x)

=

∑

x
π2(z1 | x−i)π

2(x) Pr(o ∈ S | x)
∑

x
g(x)π2(x) Pr(o ∈ S | x)

=

∑

x
π2(z1 | x−i)π

2(x) Pr(o ∈ S | x)
∑

x−i
π2(z1,x−i) Pr(o ∈ S | (z1,x−i))

=

∑

x−i
π2(z1 | x−i)

∑

z∈X π2(z,x−i) Pr(o ∈ S | (z,x−i))
∑

x−i
π2(z1 | x−i)

∑

z∈X π2(z,x−i) Pr(o ∈ S | (z1,x−i))
.

The right side lies between e−ǫi and eǫi because each ratio
Pr(o∈S|(z,x−i))
Pr(o∈S|(z1,x−i))

lies between e−ǫi and eǫi . Thus,

∣

∣

∣

∣

ln

(

π1(τg)

π1(g)

)∣

∣

∣

∣

≤ ǫi (69)

Similarly,
∣

∣

∣

∣

ln

(

π1(f)

π1(τf)

)∣

∣

∣

∣

≤ ǫi. (70)

Combining (69) with (70) yields the bound

∣

∣

∣

∣

ln

(

π1(f)/π1(g)

π1(τf)/π1(τg)

)∣

∣

∣

∣

≤ 2ǫi. (71)

Combining (71) with (68) we obtain the bound (63), which finishes the proof of the first inequality in the

theorem statement, namely (58).

To prove inequality (60), we use the partial ordering on vectors defined by a � b if and only if ai ≤ bi
for all i. The matrix Γ has non-negative entries, so it preserves this ordering: if a � b then ∀i ∑j γijaj ≤
∑

j γijbj and hence Γa � Γb. Rewriting the relation (59) in the form Γǫ � (1−δ)ǫ and applying induction,

we find that for all n ≥ 0, Γn
ǫ � (1− δ)nǫ. Summing over n yields

Φǫ =
∞
∑

n=0

Γn
ǫ �

∞
∑

n=0

(1− δ)nǫ = 1
δ ǫ

which, when combined with (58), yields (60).
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